

Inputs and Outputs for a Full (One-Bit) Adder	Connecting the Full Adder to the N-Bit Problem			
Think about adding a single bit (a column). A full adder* has three inputs • A (one bit of the number A) • B (one bit of the number B) • C _{in} (a carry input from the next least significant bit, or 0 for bit 0) And a full adder produces two outputs • C _{out} (a carry output for the next most significant bit) • S (one bit of the sum S) *A one-bit adder is called a "full adder" for historical reasons. A "half adder" adds two bits instead of three.	Consider bit M of the addition (bit 0 is on the right, bit 1 to the left of bit 0, and so forth). We need to add $\mathbf{A}_{\mathbf{M}}$, $\mathbf{B}_{\mathbf{M}}$, and $\mathbf{C}^{\mathbf{M}}$ to produce bit $\mathbf{S}_{\mathbf{M}}$, of the sum and bit $\mathbf{C}^{\mathbf{M}+1}$, the carry into bit $\mathbf{M}+1$ of the addition.			
ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 5	ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 6			

Write a Truth Table for Full Adder O	outputs
--------------------------------------	---------

Let's calculate the	Α	В	$\mathbf{C}_{\mathbf{in}}$	C _{out}	S	
outputs for a full	0	0	0	0	0	
adder.	0	0	1	0	1	
You may remember	0	1	0	0	1	
table a few weeks	0	1	1	1	0	
ago.	1	0	0	0	1	
But let's do it again	1	0	1	1	0	
	1	1	0	1	0	
	1	1	1	1	1	
ECE 120: Introduction to Computing	© 2016 S	teven S. I	Lumetta. All 1	rights reserved.		

Fill a K-map for $\mathrm{C}_{\mathrm{out}}$ from the Truth Table

Now	fill	in tł	ne tr	uth	Α	В	$\mathbf{C}_{\mathbf{in}}$	C _{out}	\mathbf{S}
table	e for	Cou	t•		0	0	0	0	0
					0	0	1	0	1
					0	1	0	0	1
C		в	C _{in}		0	1	1	1	0
$\mathbf{U}_{\mathbf{out}}$	00	01	11	10	1	0	0	0	1
0	0	0	1	0	1	0	1	1	0
A 1	0	1	1	1	1	1	0	1	0
	0				1	1	1	1	1
ا FCP 190: Introduction to Computing P 2016 Stown S Lumotta All rights meanued slide 8									

Solve the K-map to Find C _{out}	The Sum is Best Written as an XOR				
And find the loops. So we can write $C_{out} = AB + AC_{in} + BC_{in}$ (called a majority function, by the way). $C_{out} \xrightarrow{OO O1 11 10} \\ A \xrightarrow{O O O 1 0} \\ 1 0 1 1 1 10}$	What about S? We can (of course) use another K-map.AB C_{in} C_{out} SBut a K-map doesn't give us the best answer in this case (a rare case!).00101S is 1 when an odd number of inputs are 1.100110So $S = A \oplus B \oplus C$.111111				
ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 9	ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 10				

Circuit for a Full Adder Using AND, OR, and XOR

Use N One-Bit Adders to Build an N-Bit Adder

Symbol for an N-Bit Adder

To Build a Bigger Adder, Just Connect $\mathrm{C}_{\mathrm{out}}$ to C_{in}

