University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering
ECE 120: Introduction to Computing

The Ripple Carry Adder

## Build an Addition Device Based on Human Addition

Weeks ago, we talked about a
"hardware device" to perform addition.
Now, you're ready to design it.
Let's start by reviewing the human approach.
Basing a design on the human approach

- is usually the easiest way, and
- often leads to a good design, too.
- (Humans are pretty smart.)

ECE 120: Introduction to Computing $\quad \bigcirc 2016$ Steven S. Lumetta. All rights reserved.
slide 2

## Example: Addition of Unsigned Bit Patterns

Let's do an example with 5-bit unsigned

> | 11 |
| :--- |
| 01110 |
| +00100 |
| 10010 |

Good, we got the right answer!

## Name Signals (Bits) for Our Hardware Design

Let's do an example with 5-bit unsigned

| carry C | 11000 | There is no |
| ---: | ---: | :---: |
| A | 01110 | "blank" bit. |
| B +00100 <br> sum S | 10010 | Each 1-bit |
| sum needs a |  |  |
| d, we got the right answer! |  |  |
| least significant bit, $\mathrm{C} \leftarrow 0$. | C input. |  |

For other bits, C comes from next bit to right.

## Inputs and Outputs for a Full (One-Bit) Adder

Think about adding a single bit (a column).
A full adder* has three inputs

- A (one bit of the number A)
- B (one bit of the number B)
- $\mathbf{C}_{\text {in }}$ (a carry input from the
next least significant bit, or 0 for bit 0 )
And a full adder produces two outputs
$\cdot C_{\text {out }}$ (a carry output for the
next most significant bit)
$\circ S$ (one bit of the sum $S$ )
*A one-bit adder is called a "full adder" for historical reasons. A half adder" adds two bits instead of three.


## Connecting the Full Adder to the N-Bit Problem



## Write a Truth Table for Full Adder Outputs

| Let's calculate the | $\mathbf{A}$ | $\mathbf{B}$ | $\mathbf{C}_{\text {in }}$ | $\mathbf{C}_{\text {out }}$ | $\mathbf{S}$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| outputs for a full | $\mathbf{0}$ | $\mathbf{0}$ | 0 | 0 | 0 |
| adder. | 0 | 0 | 1 | 0 | 1 |
| You may remember | 0 | 1 | 0 | 0 | 1 |
| solving this truth | 0 | 1 | 1 | 1 | 0 |
| table a few weeks | 1 | 0 | 0 | 0 | 1 |
| ago. | $\mathbf{1}$ | 0 | 1 | 1 | 0 |
| But let's do it again... | $\mathbf{1}$ | 1 | 0 | 1 | 0 |
|  | $\mathbf{1}$ | 1 | 1 | 1 | 1 |

## Fill a K-map for $\mathrm{C}_{\text {out }}$ from the Truth Table

| Now fill in the truth table for $\mathrm{C}_{\text {out }}$. |  |  |  |  | A | B | $\mathrm{C}_{\text {in }}$ | $\mathrm{C}_{\text {out }}$ | S |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 0 | 0 | 0 | 0 | 0 |
| Cout |  |  |  |  | 0 | 0 | 1 | 0 | 1 |
|  |  |  |  |  | 0 | 1 | 0 | 0 | 1 |
|  | $\mathrm{BC}_{\text {in }}$ |  |  |  | 0 | 1 | 1 | 1 | 0 |
|  | 00 | 01 | 11 | 10 | 1 | 0 | 0 | 0 | 1 |
| $\mathrm{A}_{1}^{0}$ | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 |
|  | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 |
|  |  |  |  |  | 1 | 1 | 1 | 1 | 1 |

## Solve the K-map to Find $\mathrm{C}_{\text {out }}$

And find the loops.
So we can write $\mathbf{C}_{\text {out }}=\mathbf{A B}+\mathbf{A C}_{\text {in }}+\mathbf{B C}_{\text {in }}$ (called a majority function, by the way).


ECE 120: Introduction to Computing

ECE 120: Introduction to Computin
What about S? We can (of course) use another K-map.

| A | B | $\mathbf{C}_{\text {in }}$ | $\mathbf{C}_{\text {out }}$ | $\mathbf{S}$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 1 |
| 0 | 1 | 0 | 0 | 1 |
| 0 | 1 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 | 1 |
| 1 | 0 | 1 | 1 | 0 |
| 1 | 1 | 0 | 1 | 0 |
| 1 | 1 | 1 | 1 | 1 | give us the best answer in this case (a rare case!)

S is 1 when an odd number of inputs are 1.

So $\mathbf{S}=\mathbf{A} \oplus \mathbf{B} \oplus \mathbf{C}$.
© 2016 Steven S. Lumetta. All rights reserved.

## * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * XOR Shows up as a Checkerboard Pattern

| Here's the K-map for S. Notice the checkerboard pattern of the XOR. |  |  |  |  | A | B | $\mathrm{C}_{\text {in }}$ | $\mathrm{C}_{\text {out }}$ | S |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 0 | 0 | 0 | 0 | 0 |
|  |  |  |  |  | 0 | 0 | 1 | 0 | 1 |
|  |  |  |  |  | 0 | 1 | 0 | 0 | 1 |
|  | $\mathrm{BC}_{\text {in }}$ |  |  |  | 0 | 1 | 1 | 1 | 0 |
|  | 00 | 01 | 11 | 10 | 1 | 0 | 0 | 0 | 1 |
| A ${ }_{1}^{0}$ | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 |
|  | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 |
|  |  |  |  |  | 1 | 1 | 1 | 1 |  |

## Circuit for a Full Adder Using AND, OR, and XOR

We can draw our full adder using AND, OR, and XOR.


## CMOS Implementation Using NAND and XOR

In CMOS, we replace AND/OR with NAND/

## NAND.

The XOR remains as an XOR gate.


## Use N One-Bit Adders to Build an N-Bit Adder

The figure below illustrates construction of an N -bit adder from N full adders.


This approach is called a ripple carry adder because the carry ripples slowly from low to high. We also call it a bit-sliced adder.

## How Do We Add N Bits?

Use a full adder for each of the $\mathbf{N}$ columns.
Feed a 0 into $\mathbf{C}_{\text {in }}$ for the least significant bit.
$\mathrm{C}_{\text {out }}$ of the most significant bit
is the adder's carry out.
For the other carry signals, connect $\mathbf{C}_{\text {out }}$ of each bit to $\mathbf{C}_{\text {in }}$ of the next most significant bit.
Divide the bits of $\mathbf{A}$ and $\mathbf{B}$
amongst the full adders.
Collect the bits of S from the full adders.

## Symbol for an N-Bit Adder

We draw an N-bit adder as shown here.
Note the shape.
Note also the crosshatch and bit width ("N") for multi-bit signals.


## To Build a Bigger Adder, Just Connect $\mathrm{C}_{\text {out }}$ to $\mathrm{C}_{\text {in }}$

We can build bigger adders by connecting adders together physically (as shown below) or virtually (by saving the carry out bit and using it as the carry in to the next adder).


