

Start by Specifying the Inputs and Outputs	The User Has Three Choices (and One Non-Choice)
inputs: three buttons $^{\circ}$ M(ango): 1 when it's pushed $^{\circ}$ B(lend): 1 when it's pushed $^{\circ}$ P(istachio): 1 when it's pushed outputs: two 2-bit unsigned numbers $^{\circ}$ C _M [1:0]: number of ½ cups of mango $^{\circ}$ C _P [1:0]: number of ½ cups of pistachio	Help fill in the truth tableMBP C_M C_P 0000000Push M, get one cup of mango.00100Push B, get ½ cup of each.01001Push P, get one cup of pistachio.10000Push nothing, get nothing.1010I11010

Fill the Rest with Don't Cares	We Need to Solve for Each Output Bit
What about the rest?MBP C_M C_P Who cares?000000Fill with x's.01001001100101011Xxxx101001011Xxxx1101011Xxxx111xx111xx111xx111xx111xx111xx	Now we can copy to K-maps. First, $C_M[1]$. M B P C_M C_P 0 0 0 0 0 00 00 $C_M[1]$ BP 0 0 1 00 10 M BP 0 1 0 10 10 M BP 0 1 0 10 10 M 0 0 1 0 0 1 10 M 0 0 1 1 1 1 1 1 M 0 0 1 1 1 1 1 1 M 0 0 1
ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 5	ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 6

Solve the Low Bit of Mango				
Next, $C_M[0]$.	M	BF	C _M	C _P
	0	0 0	00	00
вр	0	01	00	10
C _M [0] 00 01 11 10	0	1 0	01	01
0 0 0 X 1	0	1 1	xx	xx
M	1 (0 0	10	00
	1 (01	xx	xx
$C_{M}[0] = B$	1 :	1 0	xx	xx
	1 :	1 1	xx	xx

Solve the High Bit of Pistachio						
And $C_{p}[1]$.	\mathbf{M}	В	Р	C _M	C _P	
11.3	0	0	0	00	00	
PD	0	0	1	00	10	
$C_{P}[1]$ DI 00 01 11 10	0	1	0	01	01	
$0 0 1 \times 0$	0	1	1	xx	xx	
M A A A A A A A A A A A A A A A A A A A	1	0	0	10	00	
1 0 <u>x x</u> x	1	0	1	xx	xx	
C _P [1] = P	1	1	0	xx	xx	

1 1 1 xx xx

The Solution Requires No Gates!

Let's Clean Up the Inputs	Use Glue Logic to Ensure that Assumptions Hold
 How can we fix the problem? One approach: choose specific outputs for each combination of inputs, then solve the K-maps again. Another approach: clean up the inputs with more logic prevent humans from ever producing bad combinations. 	For example, we can force all inputs to zero if the human presses more than one button. Each of the AND gates produces a 1 iff the corresponding button is the ONLY 1 entered. $M = \frac{C_{M}[1]}{C_{M}[0]}$
ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 13	ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 14

