University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering

ECE 120: Introduction to Computing

Don't Care Outputs

ECE 120: Introduction to Computing
© 2016 Steven S. Lumetta. All rights reserved.
slide 1
slide 1

Some Input Combinations May Not Matter

Sometimes, we don't care whether a particular input combination generates a 0 or a 1 .
For example,

- when an input combination is impossible to generate, or - when outputs are ignored in the case of an input combination.

For Such Inputs, Use 'x' to Indicate "Don't Care"

In such cases, we use ' x ' (called a "don't care") in place of the desired output.
Indicates that either 0 or 1 is acceptable.
However: whatever we implement will generate a 0 or a 1 , not a "don't care."
So we need to be sure that we really do not care.

Why Are "Don't' Cares" Useful?

More choices often means a "better" answer (for any choice of metric).
Say that you optimize a K-map for a function \mathbf{F}.
Then you consider several other functions G, H, and J.
If you have to pick one of the four functions ($\mathrm{F}, \mathrm{G}, \mathrm{H}$, or J), the choice can't get worse, since you can always pick F, but the best choice may be better than \mathbf{F}.

N "Don't Cares" Allows 2 ${ }^{N}$ Different Functions

Using x's for outputs means allowing more than one function to be chosen.
Each x can become a 0 or a 1 .
So optimizing with N x's means choosing from among 2^{N} possible functions.

An Example with Two "Don't Cares"

 care about the value of \mathbf{F} when $A B=01$.*
*This notation means $\mathrm{A}=0$ AND $\mathrm{B}=1$. You can infer that $A B$ in this case does not mean A AND B because
the product $\mathbf{A B}$ has a single truth value (0 or 1).

ECE 120: Introduction to Computin
© 2016 Steven S. Lumetta. All rights reserved.
slide 6

Solution for F with $0 \mathrm{~s}: \mathrm{AB}+\mathrm{B}^{\prime} \mathrm{C}$

One option is to fill the
blanks with 0s.*
Then we can solve.

$$
\mathbf{F}=\mathrm{AB}+\mathrm{B}^{\prime} \mathrm{C}
$$

But we could have chosen

	AB			
F	00	01	11	10
0	0	0	1	0
	1	0	1	1

*Without more information about F , filling with 0 s is no better nor worse than any other choice.

Solution for F with a 0 and a $1: \mathrm{AB}+\mathrm{C}$

For example, we could put a 0 and a $1 . .$.
And then solve.

$$
\mathbf{F}=\mathbf{A B}+\mathbf{C}
$$

This function is better
 than the first one (it has one fewer literal).

Solution for F with "Don't Cares": B + C

Rather than solving for all four possibilities, let's write x's into the K-map.
The x's can be 0 s or 1 s ,
 so to solve the K-map,

- we can grow loops to include x's,
- but we do not need to cover x's.

$$
\mathbf{F}=\mathbf{B}+\mathbf{C} \text { (the best possible answer) }
$$

Always Check that "Don’t Cares" Have No Ill Effects

When designing with x's, it's a good habit to verify that the 0 s and 1 s generated in place of x's do not cause any adverse effects.

For our function, both x's
become 1s because they are inside a loop.
(We don't have any more context for this example, so we are done.)

