University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering

ECE 120: Introduction to Computing

Boolean Properties and Optimization

ECE 120: Introduction to Computing
© 2016 Steven S. Lumetta. All rights reserved.
slide 1

The Dual Form Swaps 0/1 and AND/OR

Boolean algebra has an interesting property called duality.
Let's define the dual form of an expression as follows:

- Starting with the expression,
- swap 0 with 1
(just the values, not variables),
- and swap AND with OR.

ECE 120: Introduction to Computing
© 2016 Steven S. Lumetta. All rights reserved.
slide 2

Every Boolean Expression Has a Dual Form

For example, what is the dual of

$$
\mathrm{A}+(\mathrm{BC})+(0(\mathrm{D}+1)) ?
$$

First replace the 0 with 1 and the 1 with 0 .
Then replace $+(\mathrm{OR})$ with (AND)
and vice-versa.
We obtain:

$$
A \cdot(B+C) \cdot(1+(D \cdot 0))
$$

The Dual of the Dual is the Expression

So what is the dual of

$$
A \cdot(B+C) \cdot(1+(D \cdot 0)) ?
$$

Since we're swapping things, swapping them again produces the original expression:

$$
A+(B C)+(0(D+1))
$$

Thus any Boolean expression has a unique dual, and the dual of the dual is the expression (hence the term duality-two aspects of the same thing).

Pitfall: Do Not Change the Order of Operations

Be careful not to change the order of operations when finding a dual form.
For example, the dual form of

$$
\mathrm{A}+\mathrm{BC}
$$

is

$$
\mathrm{A}(\mathrm{~B}+\mathrm{C})
$$

The operation on \mathbf{B} and \mathbf{C} must happen before the other operation.

Why Do You Care? One Reason: the Principle of Duality

Three reasons:

- CMOS gate structures are dual forms
- Quick way to complement any expression
- the principle of duality

Let's start with the last, which we'll use shortly (when we examine more properties).
Principle of duality: If a Boolean theorem or identity is true/false, so is the dual of that theorem or identity.
ECE 120: Introduction to Computing © \quad 2016 Steven S. Lumetta. All rights reserved.

ECE 120: Introduction to Computing \quad © 2016 Steven S. Lumetta. All rights reserved.
slide 6

Generalized DeMorgan is Quick and Easy

Let's say that we have an expression F .
To find F' ... apply DeMorgan's Laws ...
Apply repeatedly, as many times as necessary.
Or use the generalized version based on duality:

- Write the dual form of \mathbf{F}.
- Swap variables and
complemented variables.
- (That's all.)

An Example of Finding a Complement with the Dual Form

$$
\begin{gathered}
\mathrm{F}=\mathrm{AB}\left(\mathrm{C}+\mathrm{DL}^{\prime} \mathrm{G}\left(\mathrm{~B}^{\prime}+\mathrm{A}+\mathrm{E}\right)\right)\left(\mathrm{H}+\mathrm{J}^{\prime} \mathrm{A}^{\prime} \mathrm{B}\right) \\
\text { What's } \mathrm{F}^{\prime} ?
\end{gathered}
$$

The dual is

$$
\mathrm{A}+\mathrm{B}+\underset{\left.\left(\mathrm{H} \mathrm{~J}^{\prime}+\mathrm{A}^{\prime}+\mathrm{B}\right)^{\left(\mathrm{B}^{\prime} \mathrm{AE}\right)}\right)+}{\left(\mathrm{C} \mathrm{~L}^{\prime}+\mathrm{G}+\left({ }^{(2)}\right.\right.}
$$

So

$$
\left.\left.\mathrm{F}^{\prime}=\mathbf{A}^{\prime}+\mathrm{B}^{\prime}+\underset{\left(\mathrm{H}^{\prime}\right.}{ }\left(\mathrm{H}^{\prime}\left(\mathrm{D}^{\prime}+\mathrm{A}+\mathrm{L}^{\prime}+\mathrm{B}^{\prime}\right)\right)\left(\mathbf{B A}^{\prime} \mathrm{E}^{\prime}\right)\right)\right)+
$$

You can skip the middle step once you're comfortable with the process.

We Can Derive a Gate's Output from the n-type Network

What about CMOS gate structures?
Think about the network of n-type
MOSFETS connecting an output Q to 0 V .
For example, consider a set of
four n-type arranged in parallel with inputs A, B, C, and D.
So $\mathbf{Q}=0$ if ANY of the transistors is on. In other words, \mathbf{Q} is 0 when $\mathbf{A}+\mathbf{B}+\mathbf{C}+\mathrm{D}$.
Thus $\mathbf{Q}=(\mathbf{A}+\mathbf{B}+\mathbf{C}+\mathbf{D})^{\prime}$. A NOR gate.

ECE 120: Introduction to Computing
© 2016 Steven S. Lumetta. All rights reserved.
slide 9

We Can Also Derive Function from the p-type Network

What about the p-type transistors on the same gate?
${ }^{\circ}$ They are arranged in series.
-They connect \mathbf{Q} to V_{dd}.
But p-type transistors are on when their gates are set to 0 . So $\mathbf{Q}=1$ when ALL of the inputs are 0 .
Thus $\mathbf{Q}=\mathbf{A}^{\prime} \mathbf{B}^{\prime} \mathbf{C}^{\prime} \mathbf{D}^{\prime}$.
That's the same expression, of course.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved.
slide 10

The Expressions are Related via Generalized DeMorgan

But notice that we can also

- get the second form
- by applying generalized DeMorgan to the first form.
Starting with

$$
\mathbf{Q}=(\mathbf{A}+\mathrm{B}+\mathrm{C}+\mathrm{D})^{\prime},
$$

we find the dual of $A+B+C+D$ to be $A B C D$, so

$$
\mathbf{Q}=A^{\prime} \mathbf{B}^{\prime} \mathbf{C}^{\prime} \mathbf{D}^{\prime} .
$$

The Networks are Dual Forms of One Another

The complemented variables come from the use of p-type transistors.
The dual form is built into the gate design.
If we want to design a gate for something OTHER than NAND, NOR, NOT:

- Write the output as $\mathbf{Q}=(\text { expression })^{\prime}$,
- Build that expression from n-type MOSFETs.
- Build the dual of the expression from p-type MOSFETs.

An Example of an Unusual Gate

Consider the gate here:
From the n-type network,

$$
\mathbf{Q}=((\mathbf{A}+\mathrm{B}) \mathbf{C})^{\prime}
$$

The dual of the expression (ignoring the complement) is

$$
\mathrm{AB}+\mathrm{C}
$$

which is the structure of the p-type network.

Optimization versus Abstraction

Most designers just use NAND and NOR
(or, today, even higher-level abstractions!).
In general:

- breaking abstraction boundaries
can give us an advantage,
- but the boundaries make
the design task less complex,
- which improves human productivity and reduces the likelihood of mistakes.
That's another tradeoff.
Computer aided design (CAD) tools can perform some of these optimizations for us, too.

Area and Speed for the Unusual Gate

So the function $\mathbf{Q}=((\mathbf{A}+\mathbf{B}) \mathbf{C})^{\prime}$ requires six transistors and one gate delay.
We can, of course, limit ourselves
to NAND/NOR gates.
In that case, $\mathbf{Q}=\left(\left(\mathrm{A}^{\prime} \mathrm{B}^{\prime}\right)^{\prime} \mathbf{C}\right)^{\prime}$
We use one two-input NAND for ($\left.A^{\prime} B^{\prime}\right)^{\prime}$, and a second two-input NAND for \mathbf{Q}.
If we assume that A^{\prime} and B^{\prime} are available, the NAND design requires eight transistors and two gate delays.

More Dual Form Boolean Properties

DeMorgan's Laws are also dual forms

$$
(A+B)^{\prime}=A^{\prime} B^{\prime} \quad(A B)^{\prime}=A^{\prime}+B^{\prime}
$$

What about distributivity? Here's the rule that you know from our usual algebra

$$
A(B+C)=A B+A C
$$

(multiplication distributes over addition)
It's also true in Boolean algebra:
AND distributes over OR.

ECE 120: Introduction to Computing

OR Also Distributes Over AND in Boolean Algebra

$$
A(B+C)=A B+A C
$$

Now take the dual form...

$$
\mathrm{A}+\mathrm{BC}=(\mathrm{A}+\mathrm{B})(\mathrm{A}+\mathrm{C})
$$

OR distributes over AND!
(Note that this property does NOT hold in our usual algebra. $14+7 \cdot 4 \neq(14+7)(14+4))$
ECE 120: Introduction to Computing © \quad 2016 Steven S. Lumetta. All rights reserved.

One More Property: Consensus

The last property is non-intuitive.

$$
\mathrm{AB}+\mathrm{A}^{\prime} \mathrm{C}+\mathrm{BC}=\mathrm{AB}+\mathrm{A}^{\prime} \mathrm{C}
$$

It's called "consensus" because

- the first two terms TOGETHER (when both are true, and thus reach a consensus) imply the third term
- so the third term can be dropped.

A K-Map Illustrates Consensus Well

Let's look at a K-map.
AB is the vertical green loop.
$\mathrm{A}^{\prime} \mathrm{C}$ is the horizontal green loop.
$\mathbf{B C}$ is the black loop.

ECE 120: Introduction to Computing

Consensus Has Two Dual Forms (SOP and POS)

And, of course, there is another form of consensus for POS form.

Start with our first form:

$$
\mathrm{AB}+\mathrm{A}^{\prime} \mathrm{C}+\mathrm{BC}=\mathrm{AB}+\mathrm{A}^{\prime} \mathrm{C}
$$

Then find the dual to obtain:
$(A+B)\left(A^{\prime}+C\right)(B+C)=(A+B)\left(A^{\prime}+C\right)$

