

Everv	Bool	ean	Expres	sion	Has	яI	Jual	Form	
LIVCLY	DOOL	Call	LINDICO	51011	IIab	aı	Juai	TOTIL	

For example, what is the dual of

$$A + (BC) + (0 (D + 1))$$
?

First replace the **0** with **1** and the **1** with **0**.

Then replace + (OR) with (AND) and vice-versa.

We obtain:

A
$$(B + C) (1 + (D 0))$$

The Dual of the Dual is the Expression

So what is the dual of

A (B + C) (1 + (D 0))?

Since we're swapping things, swapping them again produces the original expression:

A + (BC) + (0 (D + 1))

Thus **any Boolean expression has a unique dual**, and the dual of the dual is the expression (hence the term duality—two aspects of the same thing).

Pitfall: Do Not Change the Order of OperationsBe careful not to change the order of operations when finding a dual form.For example, the dual form of $A + BC$ is $A (B + C)$ The operation on B and C must happen before the other operation.	 Why Do You Care? One Reason: the Principle of Duality Three reasons: CMOS gate structures are dual forms Quick way to complement any expression the principle of duality Let's start with the last, which we'll use shortly (when we examine more properties). Principle of duality: If a Boolean theorem or identity is true/false, so is the dual of that theorem or identity.
ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 5	ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 6

Generalized DeMorgan is Quick and Easy

Let's say that we have an expression **F**. To find **F'** ... apply DeMorgan's Laws ... Apply repeatedly, as many times as necessary. Or use the generalized version based on duality: • Write the dual form of **F**. • Swap variables and complemented variables. • (That's all.) An Example of Finding a Complement with the Dual Form

F = AB (C + (DL'G(B' + A + E))) (H + (J'A'B)) What's F'?

The dual is

$$A + B + (C (D + L' + G + (B'AE))) + (H (J' + A' + B))$$

 So

$$F' = A' + B' + (C' (D' + L + G' + (BA'E'))) + (H' (J + A + B'))$$

You can skip the middle step once you're comfortable with the process.

slide 7

ECE 120: Introduction to Computing

 $\ensuremath{\mathbb C}$ 2016 Steven S. Lumetta. All rights reserved.

slide 11

ECE 120: Introduction to Computing

Optimization versus Abstrac	tion
-----------------------------	------

Most designers just use NAND and NOR (or, today, even higher-level abstractions!). In general: • breaking abstraction boundaries can give us an advantage, • but the boundaries make the design task less complex, • which improves human productivity and reduces the likelihood of mistakes. That's another tradeoff. Computer aided design (CAD) tools can perform some of these optimizations for us, too.	Easy, but analyzing (E

Simple Boolean Properties

Easy, but useful to commit to memory for analyzing circuits...

1 + A = 1	$0 \cdot \mathbf{A} = 0$
$1 \cdot A = A$	0 + A = A
$\mathbf{A} + \mathbf{A} = \mathbf{A}$	$\mathbf{A} \cdot \mathbf{A} = \mathbf{A}$
$\mathbf{A} \cdot \mathbf{A}' = 0$	A + A' = 1

(Each row gives two dual forms.)

slide 15

More Dual Form Boolean Properties	OR Also Distributes Over AND in Boolean Algebra
DeMorgan's Laws are also dual forms (A + B)' = A'B' $(AB)' = A' + B'$	A(B + C) = AB + ACNow take the dual form
What about distributivity? Here's the rule that you know from our usual algebra A(B + C) = AB + AC(multiplication distributes over addition)	A + BC = (A + B)(A + C) OR distributes over AND!
It's also true in Boolean algebra: AND distributes over OR.	(Note that this property does NOT hold in our usual algebra. $14 + 7 \cdot 4 \neq (14 + 7)(14 + 4)$)
ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 17	ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 18

One More Property: Consensus	A K-Map Illustrates Consensus Well
The last property is non-intuitive. AB + A'C + BC = AB + A'C It's called "consensus" because • the first two terms TOGETHER (when both are true, and thus reach a consensus) imply the third term • so the third term can be dropped.	Let's look at a K-map. AB is the vertical green loop. A'C is the horizontal green loop. BC is the black loop.
POP 190: Interduction to Computing P 2010 Stores C Lumetto. All sinks accounted	elide 10 DOP 190. Interchasion to Computing P 2012 Starse & Lumette All winkto recommed elide 90

slide 19

ECE 120: Introduction to Computing

Consensus Has Two Dual Forms (SOP and POS)

And, of course, there is another form of consensus for **POS** form.

Start with our first form:

AB + A'C + BC = AB + A'C

Then find the dual to obtain:

(A + B)(A' + C)(B + C) = (A + B)(A' + C)

ECE 120: Introduction to Computing

© 2016 Steven S. Lumetta. All rights reserved.

slide 21