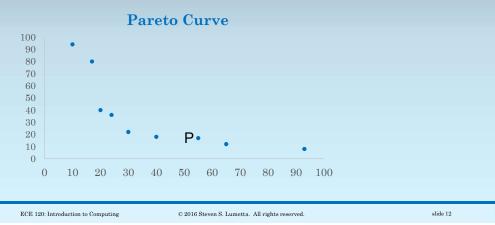

Building on your ECE120 knowledge, Now imagine that you have you have two metrics. two designs, **X** and **Y**. • Area, which you have normalized from 1 to 100. How do you choose between them? • **Delay**, which you have also normalized from 1 to 100. In both metrics, **smaller is better**. Which is more important, area or delay? For a design X, A(X) is the area, and **D(X)** is the delay. slide 3 slide 4 ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved.

Which Metric is More Important?


* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *
The answer depends on the context in which your design is used • datacenter • laptop • mobile phone • car or other vehicle • space probe • children's toy	 How do you make a choice? One option: linearize. Pick some weights actually, one weight W is enough W is the relative importance of delay compared to area Then for each design X calculate M(X) = A(X) + W D(X) Choose the design with the smallest M(X).
ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 5	ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 6

<pre>************************************</pre>	 ************************************
ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 9	ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 10

A Pareto Curve (after Discarding Dominated Points)

In many hardware design environments,	Take ECE490 some day.
 engineers run design-space exploration tasks (on computers, of course!): Given a set of parameters for a design Generate hardware for each possible combination of parameters 	Combines theory and practice: • optimization algorithms, • Implementations, • use of libraries to solve problems.
 Then use Pareto dominance to trim the results down And show the engineer the Pareto surface of 	
area, delay, and power consumption.	ECE 120: Introduction to Computing © 2017 Steven S, Lumetta, All rights reserved. slide 14