University of Illinois at Urbana-Champaign

Dept. of Electrical and Computer Engineering

ECE 120: Introduction to Computing

Karnaugh Maps (K-Maps)

ECE 120: Introduction to Computing

To Simplify, Write Function as a Sum of Prime Implicants

One way to simplify a function F :
Choose a set of prime implicants that, when ORed together, give F.

But our approach for picking prime implicants is not so easy.

ECE 120: Introduction to Computing © \quad 2016 Steven S. Lumetta. All rights reserved. slide 2

List All Implicants for One Variable A

Let's try a different approach. Start with functions of one variable, A.

How many implicants are possible?
Remember:

- There are only four functions on A!
- We only consider products of literals.

A $\quad \mathbf{A}^{\prime} \quad 1$
(1 is the product of zero literals.)

The Domain of a Boolean Function is a Hypercube

We can
${ }^{\circ}$ represent the domain

- of a Boolean function \mathbf{F} on N variables - as an N-dimensional hypercube.

Each vertex in the hypercube corresponds to one combination of the \mathbf{N} inputs.
The function \mathbf{F} thus has one value for each vertex (each input combination).

Implicants for $\mathrm{N}=1$ Correspond to Vertices and Edge

With $\mathrm{N}=1$ (one variable, A), a hypercube is just a line segment with two vertices.
The three possible implicants correspond to the two vertices and the one edge of the hypercube.
If we write the values of \mathbf{F} by the vertices, we can see which implicants are covered with 1 s .

We Draw Function F(A) Using a 1-Variable K-Map

Instead of drawing a line segment, we can draw two boxes, as shown below.
We call this approach a
Karnaugh map (K-map) on 1 variable.
The left box corresponds to $\mathbf{A}=0$, and the right corresponds to $\mathbf{A}=1$.
Each box represents

- an input combination of A,
- a vertex of the hypercube, and
- an implicant (a minterm).

ECE 120: Introduction to Computing © 2016 Steven S Lumetta. All rights reserved.
© 2016 Steven S. Lumetta. All rights reserv
slide 6

We Draw Function F Using a 1-Variable K-Map

We can mark implicants of F by circling boxes that contain 1s.
Here, we show a loop around the box corresponding to the implicant A.

We Draw Function F Using a 1-Variable K-Map

For the function F shown, we can grow the loop to contain both boxes.
The loop is now as big as possible (the full K-map!), so it cannot grow further.
The result (the implicant 1) is a prime implicant of F.
So $F(A)=1$.
Feel excited?

List All Implicants for Two Variables, A and B

Now consider two input variables, A and B.
How many implicants are possible?
Start with minterms..
$\mathrm{AB} \quad \mathrm{AB}^{\prime} \quad \mathrm{A}^{\prime} \mathrm{B} \quad \mathrm{A}^{\prime} \mathrm{B}^{\prime}$
And products of one literal...

	A \mathbf{A}^{\prime} B$\quad \mathbf{B}^{\prime}$		
And, of course	\cdots		

And, of course ${ }^{\ldots}{ }_{1}$

ECE 120: Introduction to Computing

Minterms Correspond to Vertices

With $\mathrm{N}=2$ (inputs A and B), a hypercube is a square: four vertices, four edges, and a face.

ECE 120: Introduction to Computin
2016 Steven S. Lumetta. All rights reserve
slide 10

Single-Literal Implicants Correspond to Edges

Edges include both values of one variable.

The Implicant 1 Corresponds to the Face/Square

The face includes both values of both variables.

We Draw Function G(A,B) Using a 2-Variable K-Map

We can draw a K-map on 2 variables for the function $G(A, B)$ as shown below.
Again, each box represents

- an input combination
- a vertex of the hypercube, and - an implicant (a minterm).

Process for Finding G(A,B) Using a K-Map

Now the problem is more interesting.
We want to find the largest loops

- with power-of-2 edge lengths (1 or 2)
- that together cover all 1s in G.

Why?

- A loop that can't grow is a prime implicant of G.
- If we cover all 1s, the sum of the implicants gives the function G.

To Find G, Start by Picking a 1 and Circling It

Start by picking a 1 and circling it.
The minterm $A^{\prime} B^{\prime}$ is an implicant of G.
But it's not a prime implicant of G .
We cannot grow the loop downward (cannot cover a 0 - that would not be an implicant).
We can grow the loop to the right...

Grow the Loop Until We Get a Prime Implicant

Let's grow the loop.
The loop now represents B^{\prime}, which is a prime implicant of G.
But we didn't cover one of the 1s in G yet.
We need a second loop.

ECE 120: Introduction to Computing

Start a Second Loop by Circling an Uncovered 1

The new loop represents the minterm $A B$, which is an implicant of G.
But it's not a prime implicant of G.
We cannot grow the new loop to the left.

We can grow the new loop upward...

List All Implicants for Variables A, B, and C

Guess what's next.
Three input variables: A, B, and C!
How many implicants are possible?
That's right: lots.
A 3D hypercube is a cube.
Let's count features instead.

Again, Grow the Loop Until We Get a Prime Implicant

Let's grow the loop.
The loop now represents A, which is a prime implicant of G.
Together, these two loops cover all 1s in G(A,B).
So we can write

$$
G(A, B)=B^{\prime}+A
$$

Now are you excited?

slide 18

A 3D Hypercube Has Vertices, Edges, Faces, and Cube

Notice a Pattern? 3^{N} Implicants on N Variables

$\mathrm{N}=1$ gives 3 implicants.
$\mathrm{N}=2$ gives 9 implicants.
$\mathrm{N}=3$ gives 27 implicants.
Maybe \mathbf{N} gives 3^{N} implicants?
Why?

For each input variable, we have three choices:

- include the variable
- include the complemented variable, or
- leave the variable out.

ECE 120: Introduction to Computing

How Can We Draw Boxes for the Cube?

Focus on the top half. $\mathrm{A}=0, \mathrm{~A}=1$
Each adjacent A,C pair shares an edge.
The last edge wraps around (from 10 to 00).
The top face is all four.

$$
\text { value of A,C } 0001 \quad 1110
$$

ECE 120: Introduction to Computing $\quad \bigcirc 2016$ Steven S. Lumetta. All rights reserved.

Loops Can be 1 , 2, or 4 Boxes Wide

So we use Gray code order on the boxes (one bit changes at a time).
Loops can be

- 1 box wide (a vertex)
-2 boxes wide (an edge)
- 4 boxes wide (the face)

Loops cannot be 3 boxes wide, because 3 boxes do not correspond to an implicant (implicants are hypercube features).

We Draw Function H(A,B,C) Using a 3-Variable K-Map

Here is a 3 -variable K-map.

Let's find a way to express H(A,B,C).
Start by circling a 1.

ECE 120: Introduction to Computing

Some Minterms May Be Prime Implicants

The loop represents minterm $\mathbf{A}^{\prime} \mathbf{B}^{\prime} \mathbf{C}$ Is $A^{\prime} B^{\prime} C$ a prime implicant of \mathbf{H} ?

Yes, since we cannot grow the loop left, right, nor downward.

ECE 120: Introduction to Computing

O 2016 Steven S. Lumetta. All rights reserved.

slide 26

We Have Found a Second Prime Implicant

Grow the loop.
The new loop is BC^{\prime}.
Is BC^{\prime} prime for $\mathbf{H}(\mathrm{A}, \mathrm{B}, \mathrm{C})$?
Yes. A loop cannot have three 1s, and we cannot include the 0 in the row.

Keep Choosing Prime Implicants Until All 1s are Covered

ECE 120: Introduction to Computing

Choose anothe circle it.

The new loop is the minterm $\mathrm{A}^{\prime} \mathrm{BC}^{\prime}$.

Is $\mathbf{A}^{\prime} B C^{\prime}$ prime for $\mathrm{H}(\mathrm{A}, \mathrm{B}, \mathrm{C})$?
No, we can grow the loop to the left (wrap around)

And We're Done: $\mathrm{H}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}+\mathrm{BC}^{\prime}+\mathrm{AB}$

Grow the loop.
The new loop is AB.
Is AB prime for $\mathrm{H}(\mathrm{A}, \mathrm{B}, \mathrm{C})$? Yes.

So H(A,B,C) = $\mathbf{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}+\mathrm{BC}^{\prime}+\mathrm{AB}$

ECE 120: Introduction to Computing

Goal: Minimal Number of Loops, Maximal Size per Loop

Your goal is to come up with

- a minimal number of loops
- of maximal size (all prime, of course).
- that together cover all 1 s in the function.

If you do so, the result will be optimal among SOP expressions* by our area heuristic (for 4 or fewer variables).
*A POS expression might be better, as might an expression using XORs.

K-Maps Extend Nicely to Four Variables

Now you're excited?
Ok, on to 4 variables!
It's hard to draw the hypercube.
But the K-map is not so bad.
Remember:

- Gray code order in both directions.
${ }^{\circ}$ 1, 2, or 4-box loops (no 3-box loops!).
© 2016 Steven S. Lumetta. All rights reserva. \quad slide 30

Considerations for Optimizing with K-Maps

Sometimes you end up, with loops that aren't needed. If all of a loop's 1s are covered by other loops, you can remove the loop.
To make the process faster,

- try to start by covering 1 s for which you need make no choices
- (1s for which all directions with adjacent 1s can be included in one big loop).
But you may have to make choices, and there can be more than one optimal SOP form.

Here's a 4-Variable K-Map

Here's how a
4-variable K-map looks.
We won't solve this one now.
Want to try it in the online tool?

