University of Illinois at Urbana-Champaign

Dept. of Electrical and Computer Engineering

ECE 120: Introduction to Computing

Boolean Expression Terminology

Let's Review and Define Some New Terms

literal a variable or its complement
examples: A, A', B, B', C, C'
sum several terms ORed together examples: $\mathbf{A}+\mathbf{B}, \mathbf{A B}+\mathbf{B}(\mathbf{C}+\mathbf{D})+\mathbf{A}^{\prime} \mathbf{C}$,

$$
A^{\prime} B^{\prime}+\mathbf{D}(\mathbf{A} \oplus B)\left(C+A^{\prime}\right)
$$

product several terms ANDed together
examples: $\mathbf{A B},(\mathrm{A}+\mathrm{B})(\mathrm{B}+\mathrm{CD})\left(\mathrm{A}^{\prime}+\mathrm{C}\right)$,

$$
\left(A^{\prime}+B^{\prime}\right)\left(D+(A \oplus B)+C A^{\prime}\right)
$$

ECE 120: Introduction to Computing \quad - 2016 Steven S. Lumetta. All rights reserved.
slide 2

Minterms Were Useful for Proving Logical Completeness

minterm on N inputs

a product in which each variable or its complement appears exactly once (no other factors)
examples: $\mathbf{A B}^{\prime}, \mathbf{A}^{\prime} \mathbf{B}, \mathbf{A B}$ (on inputs \mathbf{A}, \mathbf{B})
$\mathrm{AB}^{\prime} \mathrm{C}, \mathrm{AB}^{\prime} \mathrm{C}^{\prime}, \mathrm{A}^{\prime} \mathrm{BC}^{\prime}$
(on inputs $\mathbf{A}, \mathbf{B}, \mathbf{C}$)

A Maxterm Produces a Function with One Zero Row

```
maxterm on N inputs
            a sum in which each variable or
            its complement appears exactly
            once (no other terms)
        examples: (A + B'), (A'+B), (A + B)
            (on inputs A, B)
            (A+B' + C), (A + B' + C'),
    (A + 'B + C')
    (on inputs A, B, C)
```


Sum-of-Products (SOP) Form is Quite Common

```
sum-of-products (SOP)
    a sum (OR)
        of products (AND)
        of literals
        examples: }\textrm{AB}+\textrm{BC}\mathrm{ ,
            AB'+ C + A' 'C'D',
            but NOT A(B + C) + D
```


Product-of-Sums (POS) Form is Also Common

product-of-sums (POS)
a product (AND)
of sums (OR)
of literals
examples: $(A+B)(B+C)$,

$$
\left(A+B^{\prime}\right) C\left(A^{\prime}+C^{\prime}+D^{\prime}\right),
$$

but NOT (A + BC)D

ECE 120: Introduction to Computing
O 2016 Steven S. Lumetta. All rights reserved.
slide 6

Canonical Forms Allow Easy Comparison, But Are Too Big
canonical SOP
a sum of minterms; the expression
produced by the logical
completeness construction

canonical POS

a sum of maxterms
What does canonical mean?
Unique (if we assume an ordering on variables).
Too many terms to be of practical value.

Do You Know Mathematical Implication?

What does $\mathrm{A} \rightarrow \mathrm{B}$ mean?
A implies B.
In other words: if \mathbf{A} is true, \mathbf{B} is also true.

What if \mathbf{A} is false?
In that case, is $\mathbf{A} \rightarrow \mathbf{B}$ true or false?
If A is false, $A \rightarrow B$ is true.
slide 8

So the Following Odd Statements are True

All purple elephants can fly.
(X is a purple elephant $\rightarrow \mathrm{X}$ can fly.)

Students who score above 125\% in ECE120 fail the class.
(X scored above $125 \% \rightarrow \mathrm{X}$ fails.)

In both, the premise is false for any \mathbf{X}, so the implications are true.

One Function Can Imply Another

A function \mathbf{G} is an implicant of a second function \mathbf{F} iff \mathbf{G} operates on the same variables as \mathbf{F} and $\mathbf{G} \rightarrow \mathbf{F}$.
In other words, every row

- with an output of 1 in G's truth table
${ }^{-}$also has an output of 1 in F's truth table.

0 rows in G's truth table do not matter.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved.
slide 10

For Our Purposes, Implicants are Products of Literals

In digital design, we only refer to products of literals as implicants.

So we will assume that an implicant can be written as a product of literals.

We Can Use Implicants to Simplify Functions

As a first step towards simplifying a function F , we can ask:

Given an implicant G of F, can we remove any of its literals and obtain another implicant of F ?
For example, take $\mathbf{F}=\mathrm{AB}^{\prime} \mathrm{C}+\mathrm{ABC}^{\prime}+\mathrm{ABC}$.
The first term ($\mathbf{A B}^{\prime} \mathbf{C}$) is an implicant.
Can we remove any literals?

ECE 120: Introduction to Computing
© 2016 Steven S. Lumetta. All rights reserved.

Try to Remove Each Literal to Find Only AC Implies F
Start from $\mathrm{AB}^{\prime} \mathrm{C}$ and try to remove each literal.
$\mathrm{B}^{\prime} \mathrm{C}$ is not an implicant.
AC is an implicant.
AB^{\prime} is not an implicant.

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{F}	$\mathbf{B}^{\prime} \mathbf{C}$	$\mathbf{A C}$	$\mathbf{A B}$
0	0	0	0	0	0	0
0	0	1	0	1	0	0
0	1	0	0	0	0	0
0	1	1	0	0	0	0
1	0	0	0	0	0	1
1	0	1	1	1	1	1
1	1	0	1	0	0	0
1	1	1	1	0	1	0

ECE 120: Introduction to Computing

We Remove as Many Literals as We Can

So we can simplify F by
replacing AB'C with AC:

$$
\mathbf{F}=\mathbf{A C}+\mathbf{A B C}+\mathbf{A B C}
$$

Checking the second term (ABC^{\prime}), we find that we can eliminate \mathbf{C}^{\prime} to obtain:

$$
\mathrm{F}=\mathrm{AC}+\mathrm{AB}+\mathrm{ABC}
$$

In the third term $(\mathbf{A B C})$, we can eliminate \mathbf{B} or \mathbf{C}, but not both. Let's pick \mathbf{B}.

$$
\mathrm{F}=\mathrm{AC}+\mathrm{AB}+\mathrm{AC}
$$

Prime Implicants Have a Minimal Number of Literals

$$
\mathrm{F}=\mathrm{AC}+\mathrm{AB}+\mathrm{AC}
$$

But now we have a duplicate term, which we can eliminate to arrive at a simple form for F :

$$
\mathrm{F}=\mathrm{AC}+\mathrm{AB}
$$

We can remove no more literals.
One more definition: An implicant G of F is a prime implicant of F iff none of the literals in G can be removed to produce other implicants of F .
$A B$ and $A C$ are prime implicants of F.

To Simplify, Write Function as a Sum of Prime Implicants

The conclusion is obvious:
To simplify a function F, write it as a sum of prime implicants.

Enjoy the algebra.
Good luck!
(Next time, we'll develop a graphical tool that lets us skip the algebra.)

