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Boolean Expression Terminology
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Let’s Review and Define Some New Terms
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literal a variable or its complement
examples: A, A’, B, B’, C, C’

sum several terms ORed together
examples: A + B, AB + B(C + D) + A’C,

A’B’ + D(A B)(C + A’)
product several terms ANDed together

examples: AB, (A + B)(B + CD)(A’ + C),
(A’ + B’)(D + (A B) + CA’)

Minterms Were Useful for Proving Logical Completeness
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minterm on N inputs
a product in which each variable or
its complement appears exactly 
once (no other factors)

examples: AB’, A’B, AB (on inputs A, B)

AB’C, AB’C’, A’BC’

(on inputs A, B, C)

A Maxterm Produces a Function with One Zero Row
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maxterm on N inputs
a sum in which each variable or
its complement appears exactly 
once (no other terms)

examples: (A + B’), (A’ + B), (A + B)
(on inputs A, B)
(A + B’ + C), (A + B’ + C’),
(A + ’B + C’)
(on inputs A, B, C)



Sum-of-Products (SOP) Form is Quite Common
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sum-of-products (SOP)
a sum (OR) 
of products (AND) 
of literals

examples: AB + BC, 

AB’ + C + A’C’D’,

but NOT A(B + C) + D

Product-of-Sums (POS) Form is Also Common
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product-of-sums (POS)
a product (AND) 
of sums (OR) 
of literals

examples: (A + B)(B + C),

(A + B’)C(A’ + C’ + D’),

but NOT (A + BC)D

Canonical Forms Allow Easy Comparison, But Are Too Big
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canonical SOP
a sum of minterms; the expression
produced by the logical 
completeness construction

canonical POS
a sum of maxterms

What does canonical mean?

Unique (if we assume an ordering on variables).

Too many terms to be of practical value.

Do You Know Mathematical Implication?
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A implies B.

In other words: if A is true, B is also true.

What if A is false?

In that case, is true or false?

If A is false, A is true.



So the Following Odd Statements are True
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All purple elephants can fly.
(X is a purple elephant

Students who score above 125% 
in ECE120 fail the class.

(X scored above 125% X fails.)

In both, the premise is false for any X, so 
the implications are true.

One Function Can Imply Another
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A function G is an implicant of a second 
function F iff G operates on the same 
variables as F and .

In other words, every row 
with an output of 1 in G’s truth table
also has an output of 1 in F’s truth table.

0 rows in G’s truth table do not matter.

For Our Purposes, Implicants are Products of Literals
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In digital design, we only refer to 
products of literals as implicants.

So we will assume that an implicant
can be written as a product of literals.

We Can Use Implicants to Simplify Functions
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As a first step towards simplifying 
a function F, we can ask:

Given an implicant G of F, can we 
remove any of its literals and obtain 

another implicant of F?

For example, take F = AB’C + ABC’ + ABC.

The first term (AB’C) is an implicant.

Can we remove any literals?



Try to Remove Each Literal to Find Only AC Implies F
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Start from
AB’C and try
to remove 
each literal.
B’C is not an
implicant.
AC is an
implicant.
AB’ is not an
implicant.

A B C F B’C AC AB’
0 0 0 0 0 0 0

0 0 1 0 1 0 0

0 1 0 0 0 0 0

0 1 1 0 0 0 0

1 0 0 0 0 0 1

1 0 1 1 1 1 1

1 1 0 1 0 0 0

1 1 1 1 0 1 0

We Remove as Many Literals as We Can
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So we can simplify F by 
replacing AB’C with AC:

F = AC + ABC’ + ABC
Checking the second term (ABC’), we find 
that we can eliminate C’ to obtain:

F = AC + AB + ABC
In the third term (ABC), we can 
eliminate B or C, but not both.  Let’s pick B.

F = AC + AB + AC

Prime Implicants Have a Minimal Number of Literals
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F = AC + AB + AC

But now we have a duplicate term, which we can 
eliminate to arrive at a simple form for F:

F = AC + AB

We can remove no more literals.
One more definition: An implicant G of F is a 
prime implicant of F iff none of the literals 
in G can be removed to produce other 
implicants of F.

AB and AC are prime implicants of F.

To Simplify, Write Function as a Sum of Prime Implicants
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The conclusion is obvious:

To simplify a function F, 
write it as a sum of prime implicants.

Enjoy the algebra.

Good luck!

(Next time, we’ll develop a graphical tool 
that lets us skip the algebra.)


