University of Illinois at Urbana-Champaign	We Can Use Logical Completeness to Express Functions
Dept. of Electrical and Computer Engineering	Let the truth table to the $\mathbf{A} \ \mathbf{B} \ \mathbf{C} \mid \mathbf{F}$
	right define the function F . 0 0 0 0
ECE 120: Introduction to Computing	Recall that we can use the $0 0 1 0$
	logical completeness 0 1 0 0 construction to write F as a
	Boolean expression: <u>0 1 1 0</u>
Optimizing Logic Expressions	• This row is AB'C 1 0 0
	• And this is ABC' 1 0 1 1
	• And this is ABC 1 1 0 1
	1 1 1 1
ECE 120: Introduction to Computing © 2016-2017 Steven S. Lumetta. All rights reserved. slide 1	ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 2

What's the Best Way to	Wr	ite	Fui	nctio
$S_0 \mathbf{F} = \mathbf{AB'C} + \mathbf{ABC'} + \mathbf{ABC}$	Α	В	С	F
	0	0	0	0
But we can also write	0	0	1	0
$\mathbf{F} = \mathbf{AB} + \mathbf{AC}.$	0	1	0	0
	0	1	1	0
What about $\mathbf{F} = \mathbf{A} (\mathbf{B} + \mathbf{C})$?	1	0	0	0
	1	0	1	1
Which are is best?	1	1	0	1
Which one is best?	1	1	1	1

Your Answer Is Wrong! Choose a Metric First

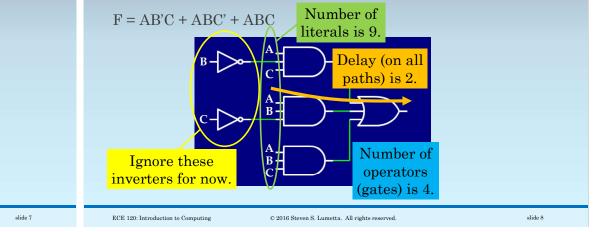
The answer depends on our choice of metric!		
How do we measure good?		
sign:		
OR		
OR		
OR		

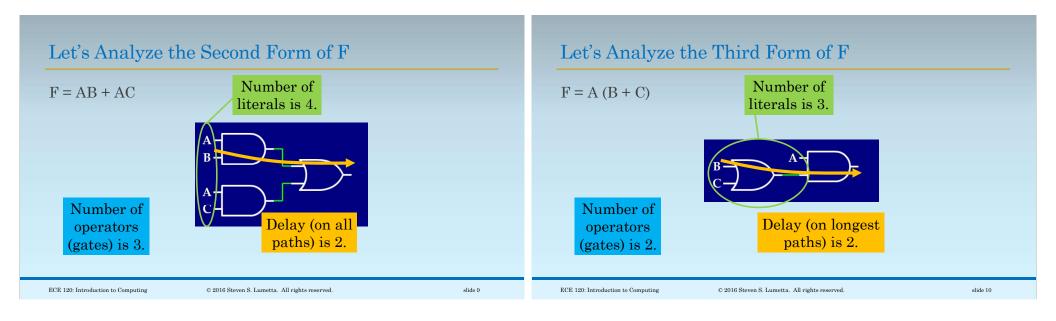
A Delay (Speed) Heuristic for ECE120

Here's a heuristic for delay / speed:

- Find the maximum number of gates between any input and any output.
- Do not include complements for literals.

Why does it work?


ECE 120: Introduction to Computing


- Each gate takes time switch its output on/off.
- We call this time a **gate delay**.

So it gives an approximate **delay** between inputs changing and outputs changing.

© 2016-2017 Steven S. Lumetta. All rights reserved.

The Area Heuristic Favors F = A (B + C)

Let's calculate the area heuristic for our three forms of F.

So F = A (B + C) is the smallest design.

Form of F	Lits	Ops	Area
AB'C + ABC' + ABC	9	4	13
AB + AC	4	3	7
A (B + C)	3	2	5

All Forms Are Equivalent in Delay

All designs are the same for delay.

Form of F	Lits	Ops	Area	Delay
AB'C + ABC' + ABC	9	4	13	2
AB + AC	4	3	7	2
A (B + C)	3	2	5	2

We Have a Winner: F = A (B + C)	**************************************
$\mathbf{F} = \mathbf{A} (\mathbf{B} + \mathbf{C})$ is best by both metrics.	These two metrics are beyond our class' scope.
But the answers are not always so simple.	You'll see power in ECE385.
Sometimes no solution is	One heuristic for power
best by both metrics.	• uses the fact that current flows when a
• See Section 2.1.1 for a simple example.	transistor switches on/off
 Later in our class, we will explore more space/time tradeoffs in design. 	• and uses simulation to estimate the number of times that happens.
• In practice, tradeoffs are commonplace.	Complexity is hard to measure, and
• Take a look at Section 2.1.6* for more.	is usually based on experience.
ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 13	ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 14