University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering
ECE 120: Introduction to Computing

Logic Gates

Today: How Can We Build Gates?

3. Functions on bits (Boolean operators, gates)

4. Two voltage levels $\rightarrow 1$ bit

How can we build gates?

ECE 120: Introduction to Computing $\quad \bigcirc 2016$ Steven S. Lumetta. All rights reserved.
slide 2

But First: Check Out My New Invention!

Last night I had a great idea. I call it a "torch."
At night, you can point it at things
And they will be lit up.
Anything!
Your car or bike.

Your door lock.
A friend.

> What do you think?

You Think I Should Do What?

Like this?

I think people already make those.
The switch is controlled by your thumb.
They call it a flashlight.

I won't be able to patent it.

ECE 120: Introduction to Computing

Don't Worry: Here's Another Idea

So, you like switches?
Let's put a bunch of switches together.
Each controlled by your thumbs.
When we want to change a bit, we will just flip a switch!
We'll call it a hand-operated computer!
We'll need about $2,000,000,000$ switches.

> What do you think?

Still Don't Like It? One Last Try...

What if we develop a
voltage-controlled switch?
Then one switch

- can control another switch,
- which can control a third switch,
- and so on!

Instead of using your thumbs, we can build circuits with $2,000,000,000$ switches!

Now THAT's a really cool idea!
ECE 120: Introduction to Computing \quad All rights reserved.
slide 6

Let's Take a Bragging Break

John Bardeen, 1908-1991
1947: invented transistor at Bell Labs with Shockley \& Brattain
1951: joined Illinois ECE faculty
(and Physics)
1956: Nobel Prize, Physics
1972: second Nobel Prize, Physics, for Bardeen-Cooper-Schrieffer
(BCS) theory of superconductivity

Bardeen's First Ph.D. Student (1954)

Nick Holonyak, Jr., 1928-
1962: invented visible light LED at GE
1963: joined Illinois ECE faculty
(also invented laser diodes for CDs/DVDs, dimmer switches, and more)
1973: National Academy of Engineering
2003: National Medal of Technology
2008: National Inventors Hall of Fame (among many other awards)

Holonyak's First(?) Ph.D. Student (1967)

Greg Stillman, 1936-1999
1975: joined Illinois ECE faculty
invented avalanche photodiodes
(for amplifying small photon sources),
among many other things
1985: National Academy of Engineering
1985-1987: Founding Director of MNTL
(the Micro- and Nano-Technology Lab)

ECE 120: Introduction to Computing
O 2016 Steven S. Lumetta. All rights reserved.
slide 9

Stillman's First Ph.D. Student (1979)
Milton Feng, 1950-
1991: joined Illinois ECE faculty
2003: invented Terahertz transistors
Jan 2004: invented light-emitting transistor (with Nick!)
Nov 2004: invented transistor laser (also with Nick!)
2016: just retired...

ECE 120: Introduction to Computing
O 2016 Steven S. Lumetta. All rights reserved.
slide 10

But Not Just Faculty!

Jack Kilby, 1923-2005
1947: BSEE from Illinois
1958-59: invented integrated circuit at TI
(also invented the thermal printer and the handheld calculator)
1967: National Academy of Engineering
2000: Nobel Prize, Physics
(See why we expect a lot of you?)

Digital Electronics is Based on MOSFETs

Digital electronics today uses MOSFETs.

- the material: Metal-Oxide Semiconductors
- the mechanism: Field-Effect Transistors (electric field/voltage-controlled)
There are two kinds, named
after the charge carrier, ${ }^{\circ}$ n(egative)-type, and ${ }^{\circ}$ p(ositive)-type,
drawn as shown here.

ECE 120: Introduction to Computing

n-type is On With Positive Gate to Source/Drain Voltage

An n-type MOSFET

- turns on (switch is closed,
allowing current to flow)
- if the voltage from gate (left terminal)
to other terminals exceeds a threshold
If the voltage is smaller, the transistor is off (the switch is open).

ECE 120: Introduction to Computing
© 2016 Steven S. Lumetta. All rights reserved.
slide 13

Our Voltages Will Be Binary

We need two voltages:
$\circ 0 \mathrm{~V}$, a ground
(this is the binary 0 value)
$\cdot \mathrm{V}_{\mathrm{dd}}$, around 1.5 V , high voltage*
(this is the binary 1 value)
*Used to be 5 V , but has been decreasing for decades. The rate of decrease is now slowing down.

ECE 120: Introduction to Computing
O 2016 Steven S. Lumetta. All rights reserved.
slide 14

Use Binary Voltages to Control n-Type MOSFETs

p-type is On With Negative Gate to Source/Drain Voltage

A p-type MOSFET

- turns on (switch is closed,
allowing current to flow)
- if the voltage from other terminals to the gate (left terminal) exceeds a threshold
If the voltage is smaller, the transistor is off (the switch is open).

Use Binary Voltages to Control p-Type MOSFETs

ECE 120: Introduction to Computing
© 2016 Steven S. Lumetta. All rights reserved.
slide 17

The Drawings Help You Remember How They Work

Notice the use of the inverter bubble on the p-type.
Use it to help you remember: - p-type turns on with low
 voltage (0 V , or binary 0).

- n-type turns on with high voltage (Vdd, or binary 1).
The names may not be so helpful (again, they refer to charge carriers).

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved.
slide 18

Gates are Based on Complementary MOS (CMOS)

So how do we build gates?
Gates use complementary structures
of p-type and n-type MOSFETs.
Each gate uses an equal number of each type.
For that reason, we say that

- most digital systems are
based on CMOS,
- or Complementary MOS.

What Does This Gate Do? (when $\mathrm{A}=0 \mathrm{~V}$)
Here is the simplest gate.
What does it do?

Let's write a truth table!

A	\mathbf{Q}
0 V	1.5 V
1.5 V	

ECE 120: Introduction to Computing
© 2016 Steven S. Lumetta. All rights reserved.

Next, Assume A = 0 and B=1
The A value is the same, so we leave the markings.

to 0 V

Next, Assume A = 1 and B = 1 (BOTTOM LINE!)
The B value is the same, so we leave the markings.

\mathbf{A}	\mathbf{B}	\mathbf{Q}
0	0	1
0	1	0
1	0	
1	1	0

ECE 120: Introduction to Computing

Q connected
 to $0 V$

$\bigcirc 2016$ Steven S. Lumetta. All rights reserved.

Finally, Assume A = 1 and B = 0
The A value is the same, so we leave the markings.

\mathbf{A}	\mathbf{B}	\mathbf{Q}
0	0	1
0	1	0
1	0	0
1	1	0

to OV
ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved.
slide 26

It's a NOR Gate!

We see that $\mathbf{Q}=(\mathbf{A}+\mathrm{B})^{\prime}$.

And Just One More to Analyze...

What if $\mathrm{A}=0$?

\mathbf{A}	\mathbf{B}	\mathbf{Q}
0	0	1
0	1	1
1	0	
1	1	

ECE 120: Introduction to Computing

Notice that the Circuit is Symmetric in A and B

ECE 120: Introduction to Computing
$\bigcirc 2016$ Steven S. Lumetta. All rights reserved

And if Both $\mathrm{A}=1$ and $\mathrm{B}=1$?

A B	Q	
0 0	1	$\square \square^{\text {Q }}$
0	1	A-1 $\square^{\text {ON }}$
10	1	
11	0	Q connected to 0 V

ECE 120: Introduction to Computing O2016 Steven S. Lumetta. All rights reserved.
slide 30

It's a NAND Gate!

We see that $\mathbf{Q}=(\mathbf{A B})^{\prime}$.

Generalizing to More Inputs

Notice the common features

- p-type always connected to Vdd.
- n-type always connected to 0V.
- One side is parallel, the other is serial (they are duals* of one another).
Can you generalize NAND/NOR to more inputs?
Let's try it in the online tool...
*See Notes Section 2.2.1.

ECE 120: Introduction to Computing

A Couple of Practical Limits

Gates scale to about 4 inputs before using more gates is a better approach.
One can easily

- design an AND or an OR gate with CMOS
- by swapping n-type with p -type,
- but MOSFETs don't work properly in those designs.
- Try it in the online tool to see what happens.
- (NAND followed by NOT is, of course, AND.)

