University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering

ECE 120: Introduction to Computing

Examples of C Programs with Loops

ECE 120: Introduction to Computing
O 2016 Steven S. Lumetta. All rights reserved.
slide 1

Time for Some Detailed Examples

Let's do some examples of program execution.
Before you can execute a program,
you need to learn how to compile.
You will learn that in the lab.
You should also take a look at the style guidelines for the class (see the Wiki).
The examples obey most style rules, but space is tight in slides.
You may want to get out a sheet of paper...

ECE 120: Introduction to Computing $\quad \bigcirc 2016$ Steven S. Lumetta. All rights reserved.
slide 2

Let's See How This Loop Works

```
/* Print 20 Fibonacci numbers. */
int A = 1; int B = 1; int C; int D;
for (D = 0; 20>D; D = D + 1) {
        printf ("%d\n", A);
        C = A + B;
        A = B;
        B = C;
}
NOTE: Example programs are available online.
    Feel free to try them before/during/after class.
```

One Statement/Step at a Time...

comment	A	B	C	D	output
before loop	1	1	bits	bits	
init				0	
20 > D					
print A					1
C = A + B			2		
A = B	1				
B = C		2			
D $=$ D + 1				1	

One Statement/Step at a Time...

comment	A	B	C	D	output
(previous slide)	1	2	2	1	
20 > D					
print A					1
C = A + B			3		
A = B	2				
B = C		3			
D = D + 1				2	

One Statement/Step at a Time...

comment	A	B	C	D	output
(previous slide)	2	3	3	2	
20 > D					
print A					2
C = A + B			5		
A = B	3				
B = C		5			
D = D + 1				3	

ECE 120: Introduction to Computing
O2016 Steven S. Lumetta. All rights reserved.
slide 5

One Statement/Step at a Time...

comment	A	B	C	D	output
(previous slide)	3	5	5	3	
20 > D					
print A					3
C = A + B			8		
A = B	5				
B = C		8			
D = D + 1				4	

One Statement/Step at a Time...

comment	A	B	C	D	output
(previous slide)	5	8	8	4	
20 > D					
print A					5
C $=$ A + B			13		
A = B	8				
B = C		13		5	
D = D + 1				5	

One Statement/Step at a Time...

comment	A	B	C	D	output
(previous slide)	8	13	13	5	
20 > D					
print A					8
C = A + B			21		
A = B	13				
B = C		21			
D = D + 1				6	

Each Loop Iteration Prints One Number

The output column on the last few slides produces the first twenty numbers in the Fibonacci sequence (on separate lines, without commas):

$$
1,1,2,3,5,8,13, \ldots, 6765
$$

ECE 120: Introduction to Computing \quad All rights reserved $-\infty$
ECE 120: Introduction to Computing
© 2016 Steven S. Lumetta. All rights reserved.
slide 10

Steps for a Factorial Printing Program

Remember factorials?

$$
\mathrm{N}!=\mathrm{N} \times(\mathrm{N}-1) \times \ldots \times 1
$$

The next program...

- prints a welcome message,
- asks user to enter a number,
- uses scanf to get the number,
- checks that the user typed something valid,
- calculates the factorial of the user's number,
\circ and prints the factorial.

Recall that main is a Sequence of Statements

When we develop a program, - we break down the problem into smaller steps,*
${ }^{\circ}$ and express each step with \mathbf{C} statements.
The six steps on the previous slide

- Are written using C statements
- And appear in order in main.
* Part 4 of our class describes a systematic way to do so. Also see P\&P Ch. 6.

ECE 120: Introduction to Computing
© 2016 Steven S. Lumetta. All rights reserved.
slide 12

Before Statements, We Declare Variables

We need two variables.
${ }^{\circ}$ In practice, a programmer may decide to declare more variables as they write statements.

- This program is already finished, so we know how many variables it needs...

int number;

/* number given by user */
int factorial;
/* factorial of user's number */

How are Variable Names Chosen?

```
int number;
/* number given by user */
int factorial;
/* factorial of user's number */
```

Variable names
- are chosen to describe their meaning,
- but we use comments to give further details

These variable names are all lower-case. Be consistent in how you use case with variable names in a program

ECE 120: Introduction to Computing slide 14

Use printf to Write to the Display

The first two steps use printf.

```
/* Print a welcome message,
    followed by a blank line. */
printf (">--- Welcome to the
factorial calculator! ---<\n\n");
/* A Warning: On two lines only on slides. 's
    n Do not break format (between quotes) over
        multiple lines!
printf ("What factorial shall I
calculate for you today? ");
```


Next Step: Wait for the User to Type a Number

After asking the user to enter a number,

- the program waits for the user
- to type a decimal value using scanf.
scanf ("\%d", \&number)
The format specifier \%d tells scanf to convert decimal ASCII to 2's complement.
The expression \&number tells scanf to store the result into the variable number.

Always Check the Return Value!

scanf ("\%d", \&number)
Remember that scanf also - returns 1 if successful (\# of conversions) - returns -1 if the user typed something that isn't a decimal number (such as "hahahaha" ... those humans!)
A program can use the return value (the value of the scanf expression) to determine what has happened...

Next Step: Quit if the User Doesn't Behave

```
if (1 != scanf ("%d", &number)) {
    printf ("Only integers, please.\n");
    return 3; /* Program failed. */
}
```

The program uses an if statement
to check the result of scanf.
If the user doesn't type a number, the program... - prints an error message, then

- terminates and tells the OS that something went wrong (non-zero by convention).

ECE 120: Introduction to Computing
© 2016 Steven S. Lumetta. All rights reserved.
slide 18

Time for Some Real Work!

```
for (factorial = number; 1 < number;
    number = number - 1) {
    factorial = factorial *
    (number - 1);
}
Note that C allows you to add extra lines
- in the middle of for loops
- and in expressions
- to make the code more readable.
```


Example: Factorial of 4

comment	factorial	number
before loop	bits	4
init	4	
1 < number		
loop body	12	3
number = number -1		
1 < number		
loop body	24	2
number = number - 1		

Example: Factorial of 4		
comment	factorial	number
(previous slide)	24	2
1 < number		
loop body	24	
number $=$ number - 1		1
1 < number		
after loop	24	1

Second Example: Factorial of 7

comment	factorial	number
(previous slide)	210	5
1 < number loop body	840	
number = number - 1		4
< number loop body	2520	
number = number -1		3

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved.
slide 23

Second Example: Factorial of 7

comment	factorial	number
(previous slide)	2520	3
1 < number		
loop body	5040	
number = number -1		2
1 < number		
loop body	5040	
number = number -1		1

ECE 120: Introduction to Computing \quad © 2016 Steven S. Lumetta. All rights reserved.

Second Example: Factorial of 7

comment	factorial	number
(previous slide)	5040	1
$1<$ number		
after loop	5040	1

Last Step: Print the Answer

```
printf ("\nThe factorial is %d.\n",
    factorial);
```

The format specifier \%d tells printf to convert 2's complement to decimal ASCII.
The variable factorial is the expression to be printed.
Then the program
terminates (successfully): return 0 ;

ECE 120: Introduction to Computing
© 2016 Steven S. Lumetta. All rights reserved.
slide 26

