University of Illinois at Urbana-Champaign Dept. of Electrical and Computer Engineering

ECE 120: Introduction to Computing

Examples of C Programs with Loops

Time for Some Detailed Examples

Let's do some examples of program execution.

Before you can execute a program, you need to learn how to compile.

You will learn that in the lab.

You should also take a look at the style guidelines for the class (see the Wiki).

The examples obey most style rules, but space is tight in slides.

You may want to get out a sheet of paper...

ECE 120: Introduction to Computing

© 2016 Steven S. Lumetta. All rights reserved.

slide 1

ECE 120: Introduction to Computing

© 2016 Steven S. Lumetta. All rights reserved.

slide 2

Let's See How This Loop Works

```
/* Print 20 Fibonacci numbers. */
int A = 1; int B = 1; int C; int D;
for (D = 0; 20 > D; D = D + 1) {
   printf ("%d\n", A);
    C = A + B;
   A = B;
   B = C;
```

NOTE: Example programs are available online. Feel free to try them before/during/after class.

One Statement/Step at a Time...

comment	A	В	С	D	output
before loop	1	1	bits	bits	
init				0	
20 > D					
print A					1
C = A + B			2		
A = B	1				
B = C		2			
D = D + 1				1	

slide 3 slide 4 ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved.

One Statement/Step at a Time...

comment	A	В	С	D	output
(previous slide)	1	2	2	1	
20 > D					
print A					1
C = A + B			3		
A = B	2				
B = C		3			
D = D + 1				2	

One Statement/Step at a Time...

comment	A	В	С	D	output
(previous slide)	2	3	3	2	
20 > D					
print A					2
C = A + B			5		
A = B	3				
B = C		5			
D = D + 1				3	

ECE 120: Introduction to Computing

 $\ensuremath{\mathbb{C}}$ 2016 Steven S. Lumetta. All rights reserved.

slide 5

ECE 120: Introduction to Computing

 $\ensuremath{\mathbb{C}}$ 2016 Steven S. Lumetta. All rights reserved.

slide 6

One Statement/Step at a Time...

comment	A	В	С	D	output
(previous slide)	3	5	5	3	
20 > D					
print A					3
C = A + B			8		
A = B	5				
B = C		8			
D = D + 1				4	

One Statement/Step at a Time...

comment	A	В	С	D	output
(previous slide)	5	8	8	4	
20 > D					
print A					5
C = A + B			13		
A = B	8				
B = C		13			
D = D + 1				5	

ECE 120: Introduction to Computing

 $\ensuremath{\mathbb{C}}$ 2016 Steven S. Lumetta. All rights reserved.

slide 7

ECE 120: Introduction to Computing

 $\ensuremath{\mathbb{C}}$ 2016 Steven S. Lumetta. All rights reserved.

slide 8

One Statement/Step at a Time...

comment	A	В	С	D	output
(previous slide)	8	13	13	5	
20 > D					
print A					8
C = A + B			21		
A = B	13				
B = C		21			
D = D + 1				6	

Each Loop Iteration Prints One Number

The output column on the last few slides **produces the first twenty numbers** in the Fibonacci sequence (on separate lines, without commas):

1, 1, 2, 3, 5, 8, 13, ..., 6765

ECE 120: Introduction to Computing

 $\ensuremath{\mathbb{C}}$ 2016 Steven S. Lumetta. All rights reserved.

slide 9

ECE 120: Introduction to Computing

 $\ensuremath{\mathbb{C}}$ 2016 Steven S. Lumetta. All rights reserved.

elide 10

Steps for a Factorial Printing Program

Remember factorials?

$$N! = N \times (N-1) \times ... \times 1$$

The next program...

- oprints a welcome message,
- asks user to enter a number,
- uses scanf to get the number,
- checks that the user typed something valid,
- ° calculates the factorial of the user's number,
- and prints the factorial.

Recall that main is a Sequence of Statements

When we develop a program,

- we break down the problem into smaller steps,*
- $^{\circ}$ and express each step with C statements.

The six steps on the previous slide

- Are written using C statements
- And appear in order in main.
 - * Part 4 of our class describes a systematic way to do so. Also see P&P Ch. 6.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 11 ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved.

Before Statements, We Declare Variables

We need two variables.

- In practice, a programmer may decide to declare more variables as they write statements.
- This program is already finished, so we know how many variables it needs...

```
int number;
/* number given by user  */
int factorial;
/* factorial of user's number */
```

ECE 120: Introduction to Computing

© 2016 Steven S. Lumetta. All rights reserved.

slide 13

How are Variable Names Chosen?

```
int number;
/* number given by user */
int factorial;
/* factorial of user's number */
```

Variable names

- · are chosen to describe their meaning,
- but we **use comments** to give further details.

These variable names are all lower-case. **Be consistent** in how you use case with variable names in a program.

ECE 120: Introduction to Computing

© 2016 Steven S. Lumetta. All rights reserved.

elido 14

Use printf to Write to the Display

calculate for you today? ");

The first two steps use printf.

Next Step: Wait for the User to Type a Number

After asking the user to enter a number,

- the program waits for the user
- to type a decimal value using scanf.

scanf ("%d", &number)

The format specifier %d tells scanf to convert decimal ASCII to 2's complement.

The expression &number tells scanf to store the result into the variable number.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 15 ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 16

Always Check the Return Value!

```
scanf ("%d", &number)
```

Remember that scanf also

- returns 1 if successful (# of conversions)
- returns -1 if the user typed something that isn't a decimal number (such as "hahahaha" ... those humans!)

A program can use the return value (the value of the scanf expression) to determine what has happened...

Next Step: Quit if the User Doesn't Behave

```
if (1 != scanf ("%d", &number)) {
   printf ("Only integers, please.\n");
   return 3; /* Program failed. */
}
```

The program uses an if statement to check the result of scanf.

If the user doesn't type a number, the program...

- oprints an error message, then
- **terminates** and tells the OS that something went wrong (non-zero by convention).

ECE 120: Introduction to Computing

 $\ensuremath{\mathbb{C}}$ 2016 Steven S. Lumetta. All rights reserved.

slide 17

ECE 120: Introduction to Computing

© 2016 Steven S. Lumetta. All rights reserved.

elido 18

Time for Some Real Work!

Note that C allows you to add extra lines

- o in the middle of for loops
- and in expressions
- to make the code more readable.

Example: Factorial of 4

comment	factorial	number
before loop	bits	4
init	4	
1 < number		
loop body	12	
number = number - 1		3
1 < number		
loop body	24	
number = number - 1		2

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 19 ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 20

Example: Factorial of 4

comment	factorial	number
(previous slide)	24	2
1 < number		
loop body	24	
number = number - 1		1
1 < number		
after loop	24	1

Second Example: Factorial of 7

comment	factorial	number
before loop	bits	7
init	7	
1 < number		
loop body	42	
number = number - 1		6
1 < number		
loop body	210	
number = number - 1		5

ECE 120: Introduction to Computing

© 2016 Steven S. Lumetta. All rights reserved.

slide 21

ECE 120: Introduction to Computing

 $\ensuremath{\mathbb{C}}$ 2016 Steven S. Lumetta. All rights reserved.

slide 22

Second Example: Factorial of 7

comment	factorial	number
(previous slide)	210	5
1 < number		
loop body	840	
number = number - 1		4
1 < number		
loop body	2520	
number = number - 1		3

Second Example: Factorial of 7

comment	factorial	number
(previous slide)	2520	3
1 < number		
loop body	5040	
number = number - 1		2
1 < number		
loop body	5040	
number = number - 1		1

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 23 ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 24

Second Example: Factorial of 7

comment	factorial	number
(previous slide)	5040	1
1 < number		
after loop	5040	1

Last Step: Print the Answer

The format specifier %d tells printf to convert 2's complement to decimal ASCII.

The variable factorial is the expression to be printed.

Then the program terminates (successfully): return 0;

ECE 120: Introduction to Computing

 $\ensuremath{\mathbb{C}}$ 2016 Steven S. Lumetta. All rights reserved.

slide 25

ECE 120: Introduction to Computing

 $\ensuremath{\mathbb{C}}$ 2016 Steven S. Lumetta. All rights reserved.

slide 26