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Remember: Statements Tell the Computer What to Do

In C, a statement tells the computer to do 
something.

There are three types of statements.

But statements can consist of other 
statements,

which can consist of other statements,

and so forth.
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Many Statements are Quite Simple

Here are two of the three types…
; /* a null statement */

/* A simple statement is often an
expression and a semicolon. */

A = B; /* simple statements */
printf ("Hello, ECE120!\n");

These two types end with a semicolon (;).
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Compound Statements Consist of Other Statements

Third type: a compound statement consists of 
a sequence of statements 
between braces.

{ /* a compound statement */
radius = 42;
C = 2 * 3.1416 * radius;
printf ("C = %f\n", C);

}

A compound statement may also contain variable 
declarations for use inside the statement.
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A Program is a Sequence of Statements

The function body of main is 
a compound statement.

The function body of main thus 
includes a sequence of 
statements.

When program is started, these 
statements execute in 
sequential order.
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Simple Statements Can Also Introduce Conditions

Simple statements in C can also introduce 
conditional execution.

Based on an 
expression, the 
computer 
executes one 
of two
statements.
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C’s if Statement Enables Conditional Execution

Conditional execution uses the if statement:
if ( <expression> ) {

/* <expression> != 0:
execute "then" block */

} else {
/* <expression> == 0:

execute "else" block */
}

<expression> can be replaced with any 
expression, and “else { … }” can be omitted.
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Examples of the if Statement

For example,
/* Calculate inverse of number. */

if (0 != number) {

inverse = 1 / number;

} else {

printf ("Error!\n");

}
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Examples of the if Statement

Or,
/* Limit size to 42. */

if (42 < size) {

printf ("Size set to 42.\n");

size = 42;

}
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Simple Statements Can Also Be Iterations

Finally, simple statements
can describe iterative
execution.

This type of
execution repeats
a statement until
a test evaluates to
false (0).

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta.  All rights reserved. slide 10

loop
body

init
expression

evaluate

(true)

(false)

update
expression

C’s for Loop Enables Iterative Execution

The following is called a for loop:
for (<init>; <test>; <update>) {

/* loop body */
}

As shown on the previous slide, the computer:
1. Evaluates <init>.

2. Evaluates <test>, and stops if it is false (0).

3. Executes the loop body.
4. Evaluates <update> and returns to Step 2.
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Iterations are Used for Repeated Behavior

/* Print multiples of 42 from 

1 to 1000. */

int N;

for (N = 1; 1000 >= N; N = N + 1) {

if (0 == (N % 42)) {

printf ("%d\n", N);

}
}
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Let’s See How This Loop Works

/* Print 20 Fibonacci numbers. */

int A = 1; int B = 1; int C; int D;

for (D = 0; 20 > D; D = D + 1) {

printf ("%d\n", A);

C = A + B;

A = B;

B = C;
}
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Another Iterative Construct: the while Loop

C provides other loop constructs, but
only the for loop is needed for ECE120.

However, we may forget to remove
while loops from our example programs.

A while loop
only specifies a <test> and a loop body, 
but is otherwise equivalent to a for loop.

while (<test>) {
/* loop body */

}
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* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Easy to Map while Loop into for Loop

while (<test>) {
/* loop body */

}

is completely equivalent to
(with empty <init> and <update>):

for ( ; <test>; ) {
/* loop body */

}
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* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
Execution of a while Loop

How does the computer execute a while loop?
while (<test>) {

/* loop body */
}

We can simplify the rules for a for loop…

1. Evaluates <init>.

2. Evaluates <test>, and stops if it is false (0).

3. Executes the loop body.
4. Evaluates <update> and returns to Step 2.
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* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Skip this step.

Skip this part.


