
University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering

ECE 120: Introduction to Computing

Statements in C

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 1

Remember: Statements Tell the Computer What to Do

In C, a statement tells the computer to do
something.

There are three types of statements.

But statements can consist of other
statements,

which can consist of other statements,

and so forth.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 2

Many Statements are Quite Simple

Here are two of the three types…
; /* a null statement */

/* A simple statement is often an
expression and a semicolon. */

A = B; /* simple statements */
printf ("Hello, ECE120!\n");

These two types end with a semicolon (;).

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 3

Compound Statements Consist of Other Statements

Third type: a compound statement consists of
a sequence of statements
between braces.

{ /* a compound statement */
radius = 42;
C = 2 * 3.1416 * radius;
printf ("C = %f\n", C);

}

A compound statement may also contain variable
declarations for use inside the statement.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 4

A Program is a Sequence of Statements

The function body of main is
a compound statement.

The function body of main thus
includes a sequence of
statements.

When program is started, these
statements execute in
sequential order.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 5

first
statement

second
statement

third
statement

Simple Statements Can Also Introduce Conditions

Simple statements in C can also introduce
conditional execution.

Based on an
expression, the
computer
executes one
of two
statements.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 6

then
statement

else
statement

evaluate
expression

(true) (false)

C’s if Statement Enables Conditional Execution

Conditional execution uses the if statement:
if (<expression>) {

/* <expression> != 0:
execute "then" block */

} else {
/* <expression> == 0:

execute "else" block */
}

<expression> can be replaced with any
expression, and “else { … }” can be omitted.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 7

Examples of the if Statement

For example,
/* Calculate inverse of number. */

if (0 != number) {

inverse = 1 / number;

} else {

printf ("Error!\n");

}

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 8

Examples of the if Statement

Or,
/* Limit size to 42. */

if (42 < size) {

printf ("Size set to 42.\n");

size = 42;

}

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 9

Simple Statements Can Also Be Iterations

Finally, simple statements
can describe iterative
execution.

This type of
execution repeats
a statement until
a test evaluates to
false (0).

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 10

loop
body

init
expression

evaluate

(true)

(false)

update
expression

C’s for Loop Enables Iterative Execution

The following is called a for loop:
for (<init>; <test>; <update>) {

/* loop body */
}

As shown on the previous slide, the computer:
1. Evaluates <init>.

2. Evaluates <test>, and stops if it is false (0).

3. Executes the loop body.
4. Evaluates <update> and returns to Step 2.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 11

Iterations are Used for Repeated Behavior

/* Print multiples of 42 from

1 to 1000. */

int N;

for (N = 1; 1000 >= N; N = N + 1) {

if (0 == (N % 42)) {

printf ("%d\n", N);

}
}

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 12

Let’s See How This Loop Works

/* Print 20 Fibonacci numbers. */

int A = 1; int B = 1; int C; int D;

for (D = 0; 20 > D; D = D + 1) {

printf ("%d\n", A);

C = A + B;

A = B;

B = C;
}

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 13

Another Iterative Construct: the while Loop

C provides other loop constructs, but
only the for loop is needed for ECE120.

However, we may forget to remove
while loops from our example programs.

A while loop
only specifies a <test> and a loop body,
but is otherwise equivalent to a for loop.

while (<test>) {
/* loop body */

}

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 14

* *

Easy to Map while Loop into for Loop

while (<test>) {
/* loop body */

}

is completely equivalent to
(with empty <init> and <update>):

for (; <test>;) {
/* loop body */

}

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 15

* *
Execution of a while Loop

How does the computer execute a while loop?
while (<test>) {

/* loop body */
}

We can simplify the rules for a for loop…

1. Evaluates <init>.

2. Evaluates <test>, and stops if it is false (0).

3. Executes the loop body.
4. Evaluates <update> and returns to Step 2.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 16

* *

Skip this step.

Skip this part.

