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Allowing Input from the Keyboard, Output to the Monitor

To control input and output (I/O), we use two 
functions from the standard C library.

Put this line at the top of your C program:

#include <stdio.h>

This directive tells the C compiler that your 
program uses the standard C I/O 
functions.
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Write Output Using printf

To write text onto the display, use printf.
The “f” means “formatted.” 

When using the function, 
you must specify the desired format
between quotation marks.

Example:
printf ("Here is an example.");

The function call above writes the text 
between the quotes to the monitor.
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Use Backslash to Include Special ASCII Characters

Certain ASCII characters 
control text appearance, and
are hard to put between quotes.

For example
ASCII’s linefeed character
(or lf, sometimes called newline)
starts a new line of text.

To include linefeed, write \n between quotes.

The backslash indicates a special ASCII 
character.  Use \\ for one backslash.
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One Can Include Many Linefeeds

Example:

printf("This\ntext\\has\nlines!\n");

The call above prints the three lines below 
(at the left of the screen).

This
text\has
lines!

The next printf also starts on a new line 
(because of the linefeed at the end of the format).
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specifies what and how to print

Use Format Specifiers to Print Expressions

printf also prints expression values

For example,
printf ("Integers: %d %d %d\n",

6 * 7, 17 + 200, 32 & 100);

Output: [followed by ASCII linefeed]
Integers: 42 217 32

The expressions to print
appear after the format specification, and
are separated by commas.
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Many Format Specifiers are Supported
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Format Specifier Interpretation
%c int or char as 

ASCII character
%d int as decimal
%e double as decimal

scientific notation
%f double as decimal
%% one percent sign

These Tables Suffice for Our Class
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See man pages on a lab machine for more. 

Format Specifier Interpretation
%u unsigned int

as decimal
%x integer as lower-case 

hexadecimal
%X integer as upper-case

hexadecimal



Format Specifiers Print Only the Expression Values

If you want spacing, include it 
in the format.
Example:

printf("%d%d%d", 12, -34, 56);

prints
12-3456

Except for format specifiers and special ASCII
characters like linefeed, characters print 
exactly as they appear.
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an int
a double

Pitfall: Passing the Wrong Type of Expression

Be sure that your expressions (and 
ordering) match the format.

Example:
printf("%d %f", 10.0, 17);

may print (output is system dependent)
0 0.000000

A C compiler may be able to warn you 
about this kind of error.
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Pitfall: Too Few/Many Expressions

If you pass more expressions than format 
specifiers, the last expressions are 
ignored.

If you pass fewer expressions than format 
specifiers, printf prints … bits!  
(In other words, behavior is unspecified.)

Again, a C compiler may be able to warn 
you about this kind of error.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta.  All rights reserved. slide 11

memory address of variable A

Read Input Using scanf

To read values from the keyboard, use scanf.
The “f” again means “formatted.” 
scanf also takes 
a format in quotation marks, and 
a comma-separated list of variable addresses

Example: int A;
scanf ("%d", &A);

reads a decimal integer, converts it to 
2’s complement, and stores the bits in A.
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scanf Ignores White Space Typed by User

Example: int A;
int B;
scanf ("%d%d", &A, &B);

The user can separate the two numbers with 
spaces, tabs, and/or linefeeds, such as …
5 42 /* A is 5, B is 42 */

5  /* two lines -> same result */
42

The user must push <Enter> when done.
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Other Characters in Format Must be Typed Exactly

If format includes characters 
other than format specifiers and white space
user must type them exactly with no extra 
spaces. Rarely useful.

Example: int A; int B;
scanf ("%d<>%d", &A, &B);

Type “5<>42” and A==5, B==42.
But type “5 <>42” and A==5, while B is 
unchanged (no initializer, so B contains bits).
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Conversion Specifiers Similar to printf
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Format Specifier Interpretation
%c store one ASCII

character (as char)
%d convert decimal 

integer to int
%f convert decimal real 

number to float
%lf convert decimal real 

number to double

Conversion Specifiers Similar to printf
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Format Specifier Interpretation
%u convert decimal 

integer to 
unsigned int

%x or %X convert hexadecimal 
integer to 
unsigned int



More Pitfalls for scanf than for printf

scanf has the same pitfalls as printf
Be sure to match format specifiers (and 
ordering) to variable types.
Be sure to match number of specifiers to 
number of addresses given.

And more!
Don’t forget to write “&” before each 
variable.  (Behavior is again undefined, but 
can be quite difficult to find the bug.)
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printf Returns the Number of Characters Printed

Function calls are expressions.
Both printf and scanf return int
(the calls evaluate to values of type int).
printf returns the number of characters 

printed to the display.
Writing a printf followed by a semicolon 

evaluates the expression (calls printf ),
then discards the return value.

The return value of printf is rarely used.
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scanf Returns the Number of Conversions

scanf returns the number of conversions 
performed successfully, or 0 or -1 for no 
conversions.
The return value is important for checking 
user input.
For example,
if (2 != scanf ("%d%d", &A, &B)) {

printf ("Bad input!\n");
A = 42; B = 10; /* defaults */

}
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