
University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering

ECE 120: Introduction to Computing

Basic I/O in C

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 1

Allowing Input from the Keyboard, Output to the Monitor

To control input and output (I/O), we use two
functions from the standard C library.

Put this line at the top of your C program:

#include <stdio.h>

This directive tells the C compiler that your
program uses the standard C I/O
functions.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 2

Write Output Using printf

To write text onto the display, use printf.
The “f” means “formatted.”

When using the function,
you must specify the desired format
between quotation marks.

Example:
printf ("Here is an example.");

The function call above writes the text
between the quotes to the monitor.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 3

Use Backslash to Include Special ASCII Characters

Certain ASCII characters
control text appearance, and
are hard to put between quotes.

For example
ASCII’s linefeed character
(or lf, sometimes called newline)
starts a new line of text.

To include linefeed, write \n between quotes.

The backslash indicates a special ASCII
character. Use \\ for one backslash.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 4

One Can Include Many Linefeeds

Example:

printf("This\ntext\\has\nlines!\n");

The call above prints the three lines below
(at the left of the screen).

This
text\has
lines!

The next printf also starts on a new line
(because of the linefeed at the end of the format).

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 5

specifies what and how to print

Use Format Specifiers to Print Expressions

printf also prints expression values

For example,
printf ("Integers: %d %d %d\n",

6 * 7, 17 + 200, 32 & 100);

Output: [followed by ASCII linefeed]
Integers: 42 217 32

The expressions to print
appear after the format specification, and
are separated by commas.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 6

Many Format Specifiers are Supported

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 7

Format Specifier Interpretation
%c int or char as

ASCII character
%d int as decimal
%e double as decimal

scientific notation
%f double as decimal
%% one percent sign

These Tables Suffice for Our Class

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 8

See man pages on a lab machine for more.

Format Specifier Interpretation
%u unsigned int

as decimal
%x integer as lower-case

hexadecimal
%X integer as upper-case

hexadecimal

Format Specifiers Print Only the Expression Values

If you want spacing, include it
in the format.
Example:

printf("%d%d%d", 12, -34, 56);

prints
12-3456

Except for format specifiers and special ASCII
characters like linefeed, characters print
exactly as they appear.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 9

an int
a double

Pitfall: Passing the Wrong Type of Expression

Be sure that your expressions (and
ordering) match the format.

Example:
printf("%d %f", 10.0, 17);

may print (output is system dependent)
0 0.000000

A C compiler may be able to warn you
about this kind of error.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 10

Pitfall: Too Few/Many Expressions

If you pass more expressions than format
specifiers, the last expressions are
ignored.

If you pass fewer expressions than format
specifiers, printf prints … bits!
(In other words, behavior is unspecified.)

Again, a C compiler may be able to warn
you about this kind of error.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 11

memory address of variable A

Read Input Using scanf

To read values from the keyboard, use scanf.
The “f” again means “formatted.”
scanf also takes
a format in quotation marks, and
a comma-separated list of variable addresses

Example: int A;
scanf ("%d", &A);

reads a decimal integer, converts it to
2’s complement, and stores the bits in A.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 12

scanf Ignores White Space Typed by User

Example: int A;
int B;
scanf ("%d%d", &A, &B);

The user can separate the two numbers with
spaces, tabs, and/or linefeeds, such as …
5 42 /* A is 5, B is 42 */

5 /* two lines -> same result */
42

The user must push <Enter> when done.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 13

Other Characters in Format Must be Typed Exactly

If format includes characters
other than format specifiers and white space
user must type them exactly with no extra
spaces. Rarely useful.

Example: int A; int B;
scanf ("%d<>%d", &A, &B);

Type “5<>42” and A==5, B==42.
But type “5 <>42” and A==5, while B is
unchanged (no initializer, so B contains bits).

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 14

Conversion Specifiers Similar to printf

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 15

Format Specifier Interpretation
%c store one ASCII

character (as char)
%d convert decimal

integer to int
%f convert decimal real

number to float
%lf convert decimal real

number to double

Conversion Specifiers Similar to printf

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 16

Format Specifier Interpretation
%u convert decimal

integer to
unsigned int

%x or %X convert hexadecimal
integer to
unsigned int

More Pitfalls for scanf than for printf

scanf has the same pitfalls as printf
Be sure to match format specifiers (and
ordering) to variable types.
Be sure to match number of specifiers to
number of addresses given.

And more!
Don’t forget to write “&” before each
variable. (Behavior is again undefined, but
can be quite difficult to find the bug.)

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 17

printf Returns the Number of Characters Printed

Function calls are expressions.
Both printf and scanf return int
(the calls evaluate to values of type int).
printf returns the number of characters

printed to the display.
Writing a printf followed by a semicolon

evaluates the expression (calls printf),
then discards the return value.

The return value of printf is rarely used.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 18

scanf Returns the Number of Conversions

scanf returns the number of conversions
performed successfully, or 0 or -1 for no
conversions.
The return value is important for checking
user input.
For example,
if (2 != scanf ("%d%d", &A, &B)) {

printf ("Bad input!\n");
A = 42; B = 10; /* defaults */

}

ECE 120: Introduction to Computing © 2016-2019 Steven S. Lumetta. All rights reserved. slide 19

