University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering

ECE 120: Introduction to Computing

Another Revision of 2's Complement Overflow

ECE 120: Introduction to Computing

Another Way to Define 2's Complement Overflow?

Other lectures saw a different condition.
Let's first name two of the carry bits.

$$
\left.\begin{array}{rlll}
C_{N} C_{N-1} & & \\
& A a_{N-2} & \ldots & a_{0} \\
& \text { (sign bit is A) } \\
+ & B b_{N-2} & \ldots & b_{0} \\
\hline & \text { (sign bit is } B) \\
\hline & \mathbf{s}_{N-2} & \ldots & \mathbf{s}_{0} \\
\text { (sign bit is } S
\end{array}\right)
$$

The other lectures were then told that

$$
\mathbf{V}=\mathbf{C}_{\mathbf{N}} \oplus \mathbf{C}_{\mathbf{N}-1}
$$

Are these two expressions the same?

One Proof Strategy: Algebra

We can use Boolean algebra to prove that

$$
\mathbf{V}=\mathbf{A B S} S^{\prime}+\mathrm{A}^{\prime} \mathbf{B}^{\prime} \mathrm{S} \text { equals } \mathbf{C}_{\mathrm{N}} \oplus \mathbf{C}_{\mathrm{N}-1}
$$

But it's not really so fun.
Trust me, I did it.
What about brute force? (a truth table)
We can calculate \mathbf{S} and $\mathbf{C}_{\mathbf{N}}$ from \mathbf{A}, \mathbf{B}, and
$\mathrm{C}_{\mathrm{N}-1}$, so we only have 3 variables as "inputs."

Proof by Exhaustion / Brute Force

A	\mathbf{B}	$\mathbf{C}_{\mathrm{N}-1}$	\mathbf{C}_{N}	S	\mathbf{V}	$\mathbf{C}_{\mathrm{N}} \oplus \mathrm{C}_{\mathrm{N}-1}$
0	0	0	0	0	0	0
0	0	1	0	1	1	1
0	1	0	0	1	0	0
0	1	1	1	0	0	0
1	0	0	0	1	0	0
1	0	1	1	0	0	0
1	1	0	1	0	1	1
1	1	1	1	1	0	0

Always Choose the Right Proof Strategy

Always choose the clearest and fastest proof strategy (usually those two metrics correlate).
Using brute force for proofs doesn't make you a brute!

