

Convert	Hex	to/from	Binary	in	Groups	of 4 Bits
			<i>.</i>		1	

Hex includes A through F to get 16 digits: 0 1 2 3 4 5 6 7 8 9 A B C D E F

> 16 = 2⁴, so each hex digit represents four bits.

Remember:

- Use of hex only serves to help humans write and remember bits!
- Digital systems just use bits.

CE	120:	Introduction	ı to	Computing

slide 3

ECE 120: Introduction to Computing

Time for a **Pop Quiz**!

Ok, what is the bit pattern? Seriously?

Maybe you remember a few of them? What if this is were an exam question?

Sigh.

Ok. it was **0001001101010101100111**.

In hex, that's **x13567** (P&P/LC-3 hex notation otherwise, 13567 is probably decimal!).

Can you remember that? **Please?**

Text was Historically Represented with ASCII	A Few Other Text Representations
How do we represent text? One early system was the American Standard Code for Information Interchange (ASCII). ASCII is a 7-bit code representing • English letters A-Z in both cases • (Arabic) digits 0-9 • Punctuation • Some special symbols (\$, #, %, and so on) • Control characters for terminals	 The ubiquity of the 8-bit byte gave rise to "extended" (8-bit) versions of ASCII. These were not standardized.* What about other languages? UIUC (NCSA) invented the browser in 1993 and the Internet received global attention. Unicode (16-bit) includes characters for many other languages. * There are 8-bit standard encodings for text today, but our goal is not an exhaustive list.
ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 5	ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 6

Terminology: Representations vs. Data Types

We will try to differentiate between

- **representation**: ways of encoding specific types of information into bit patterns
- **data type**: a specific number of bits encoded with a specific representation

Examples of data types include: 8-bit unsigned, 16-bit 2's complement, IEEE 754 single-precision floating point

High-level languages such as C associate values with data types.

Illustration of a Representation Taxonomy

Remember: Computers Do Not "Understand" Bits	Computers Always Do What They're Told			
Human text usually in ASCII or Unicode • human-readable files • your typing • text printed for you to read Computer do not "understand" what the bits mean.	For example, what does a computer do if someone tells it• to add the ASCII character "3" (0110011)• to the ASCII character "2" (0110010)?The computer adds them!Using an adderNatural log just got simpler!+ 0110010 110011 ("2") 1100101 ("e")			
ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 9	ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 10			

Computers	Require	Explicit	Instructions
comparents	require	Linpitore	

To get the "right" answer, someone (a human) must tell the computer

- to convert the ASCII to **unsigned** or **2's complement**
- $^{\circ}$ to add the converted values, and
- $^{\circ}$ to convert the sum back to $\ensuremath{\mathbf{ASCII}}!$

Second-Chance Pop Quiz!

Ok, what is the number in hex?

x13567

Memorizing numbers is not a learning objective in ECE120.

But you probably get the point of the exercise.

Hex makes it easier to deal with bits.

(You may find hex harder to use for arithmetic and logic calculations, though.)

slide 11

ECE 120: Introduction to Computing