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In Binary, We Have A Binary Point

Let’s talk about representations.

In decimal, we have a decimal point.

3.1415...

In binary, we have a binary point.

11.001001…
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tenths
hundredths

2-1’s place
2-2’s place

2-3’s place

Fixed-Point Representations Support Fractions

If we need fractions,
we can use a fixed-point representation
in which some number of bits
come after the binary point.

For example, with 32 bits:

Some signal processing and embedded 
processors use fixed-point representations.
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integer part
(16 bits)

fractional part
(16 bits)

What about Real Numbers?

A question for you:

Do we need anything else to support 
real numbers?

Note: Saying “yes” on the basis that there are 
uncountably many* real numbers is not a good 
answer.  Integers are also infinite, and 
2’s complement is sufficient for practical use.

* An infinite number for each integer.
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Isn’t Fixed-Point Good Enough?

Let’s do a calculation.
32-bit 2’s complement has what range?
That’s right: [-2,147,483,648, 2,147,483,647].
You DID all know that, right?
I didn’t.  I usually write [-231, 231 – 1].
Let’s write banking software to count pennies.
2,147,483,647 pennies is $21,474,836.47.
Anyone here have more?  If not, we’re done.
If so, use 64-bit.  You don’t have that much!
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Anyone Here Taking Chemistry?

But maybe you want to do your 
Chemistry homework?

You may need Avogadro’s number.

Anyone remember it?

Sure.  No problem.

103 is around 210, so 80 bits should work.

Who can tell me Avogadro’s number to 80 bits 
(the first 24 decimal digits will do)?
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6.022 × 1023 / mol

Wikipedia May Not Help as Much as You Think!

Last I checked (July 2016!), the best known 
experimental value was

6.022140858 × 1023 / mol

That’s only 10 digits.

So you have some serious Chemistry research 
to get done for your next homework!

Good luck!

Maybe we can just be close?
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What about Physics?

Some have Quantum Mechanics homework?

Your computer will need Planck’s constant.

What is it again?

Ok.  Another 90 bits after the binary point.

170 bits total.

Don’t forget to find another 90 bits 
(27 more decimal digits) for Avogadro.

*Use ergs, not Joules; we’ll need fewer bits!
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6.626 × 10-27 erg-sec*



We Need More Dynamic Range, Not More Precision

Do we really need 170 bits of precision?

Do we really need to specify the first 
51 significant figures for Avogadro’s 
number?

Of course not!

But we do need 170 bits of range.

We need to be able to express both tiny 
numbers and huge numbers.
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Develop a Representation Based on Scientific Notation

Let’s borrow another representation from 
humans: scientific notation.

+ 6.022 × 10 23

The human representation has three parts.
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sign

mantissa/significant figures
(precision)

exponent

Modern Computers Use Standard Floating-Point

Modern digital systems implement the 
IEEE 754 standard for floating-point.

A single-precision floating-point number 
consists of 32 bits:

What value does a bit pattern represent?

First, let me ask you a question…
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sign
(1 bit)

exponent
(8 bits)

mantissa
(23 bits)

What Values Can a Leading Digit Take?

A question for you:

In the canonical form of scientific 
notation, what are the possible values of 
the leading digit?

- 4.123 × 1045

Any digit?

1-9 (not 0).  Change exponent as needed.
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This one

0-4? 1-7?



What Values Can a Leading Digit Take?

Another question for you:

Same question, but now in binary.

1 (not 0).  Change exponent as needed.

And one more:

How many bits do we need to store one 
possible answer?

The leading 1 is implicit in binary (0 bits)!
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How to Calculate the Value of a Floating-Point Bit Pattern

The value represented by an IEEE single-
precision floating-point bit pattern is…

(-1)sign 1.mantissa × 2(exponent – 127)

Convert the exponent to decimal as if it were 
unsigned before subtracting 127.
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sign
(1 bit)

exponent
(8 bits)

mantissa
(23 bits)

Except that Exponents 0 and 255 have Special Meanings

That’s almost correct.  But exponents 0 and 
255 have special meanings:

255 can mean infinity or 
not-a-number (NaN).
0 is a denormalized number: the leading 
implicit “1” is replaced with “0” (with power 
2-126), allowing the representation to capture 
numbers closer to 0.

Except for the fact that the bit pattern of all 
0s means 0, these aspects are beyond the 
scope of our class.
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Exponent 255 is Used for Infinity and NaN

Exponent 255
Mantissa 0
Sign 0: Positive infinity
Sign 1: Negative infinity

Non-zero mantissa: NaN (Not a Number)

These special values allow the representation 
to have ‘correct’ answers to some problems 
(such as 42.0 / 0.0) and to silently track the 
impact of missing values and incorrect 
computation (such as Infinity * 0).
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* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *



Denormalization Allows Numbers Closer to 0 (and 0)

Without denormalized numbers, we have
(shown with a 3-bit mantissa)…

Denormalization puts these patterns 
closer to 0 and gives two patterns for 0: 
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2-127 2-126-2-127-2-126 (0)

2-127 2-126-2-127-2-126 0
(two patterns)

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
Converting to a Floating-Point Bit Pattern

Conversion from decimal to IEEE floating-
point is not too hard:

1. Convert to binary.

2. Change to scientific notation (in binary).

3. Encode each of the three parts.
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Use a Polynomial to Convert a Fraction to Binary

To convert a fraction F to binary, remember 
that a fraction also corresponds to a 
polynomial:

F = a-12-1 + a-22-2 + a-32-3 + a-42-4 + …
If we multiply both sides by 2

if a-1 = 1

We can then subtract a-1 from both sides
and repeat to get a-2, a-3, a-4, and so forth.
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Example of Finding a Floating-Point Bit Pattern

For example, let’s say that we want to find the 
bit pattern for 5.046875.

We first write 5 in binary: 101.

Now we need to convert the fraction

F = 0.046875.

0.046875 × 2 = 0.09375 (< 1, so a-1 = 0)

0.09375 – 0 = 0.09375
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Example of Finding a Floating-Point Bit Pattern

Start with 0.09375.

0.09375 × 2 = 0.1875 (< 1, so a-2 = 0)

0.1875 – 0 = 0.1875

0.1875 × 2 = 0.375 (< 1, so a-3 = 0)

0.375 – 0 = 0.375

0.375 × 2 = 0.75 (< 1, so a-4 = 0)

0.75 – 0 = 0.75
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Example of Finding a Floating-Point Bit Pattern

Start with 0.75.

0.75 × 2 = 1.5 (so a-5 = 1)

1.5 – 1 = 0.5

0.5 × 2 = 1 (so a-6 = 1)

1 – 1 = 0 (done)

Putting the bits together, we find

F = 0.04687510 = 0.0000112
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Example of Finding a Floating-Point Bit Pattern

Now we have converted to binary:
5.04687510 = 101.0000112 

In binary scientific notation, we have
+ 1.01000011 × 22

And, in single-precision floating point,
the sign bit is 0,
the exponent is 2+127 = 129 = 10000001,
and the mantissa is 01000011…
(no leading 1, and 15 more 0s afterward).
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Tricky Questions about Floating-Point

A question for you: 
What is 2-30 + (1 – 1)?
Quite tricky, I know.  But yes, it’s 2-30.

Another question for you:
What is (2-30 + 1) – 1?
That’s right.  It’s 0. 
At least it is with floating-point.
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Floating-Point is Not Associative

Why?
Our first sum was (2-30 + 1).

To hold the integer 1, the bit pattern’s 
exponent must be 20.

But, the mantissa for single-precision floating 
point has only 23 bits.
And thus represents powers down to 2-23.

The 2-30 term is lost, giving (2-30 + 1) = 1.

So 2-30 + (1 – 1) 2-30 + 1) – 1.
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