University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering

ECE 120: Introduction to Computing

Logical Completeness

Two Bits of Input Can be Combined into 16 Functions

Write a truth table for $\mathrm{C}=\mathrm{F}(\mathrm{A}, \mathrm{B})$.
But instead of filling in values, call the outputs \mathbf{c}_{i}.
The four c_{i} values
uniquely specify \mathbf{F}.
If we change any c_{i},
we get a different function.

\mathbf{A}	\mathbf{B}	\mathbf{C}
$\mathbf{0}$	$\mathbf{0}$	\mathbf{c}_{0}
$\mathbf{0}$	$\mathbf{1}$	\mathbf{c}_{1}
$\mathbf{1}$	$\mathbf{0}$	\mathbf{c}_{2}
$\mathbf{1}$	$\mathbf{1}$	\mathbf{c}_{3}

We thus have $2 \times 2 \times 2 \times 2=2^{4}$ choices for F.

Can We Count Functions?

A question for you:
How many different Boolean functions exist for \mathbf{N} bits of input?

How can we find the answer?
Start by thinking about small values of \mathbf{N}.
For example, $\mathrm{N}=2$. Given $\mathrm{C}=\mathrm{F}(\mathrm{A}, \mathrm{B})$,
how many choices do we have for F ?

Three Bits of Input Can be Combined into 256 Functions

What about $\mathrm{N}=3$:	A	\mathbf{B}	\mathbf{C}	\mathbf{D}
$\mathrm{D}=\mathrm{G}(\mathrm{A}, \mathrm{B}, \mathrm{C})$?	0	0	0	$\mathrm{~d}_{0}$
We can again write	0	0	1	$\mathrm{~d}_{1}$
a truth table.	0	1	0	$\mathrm{~d}_{2}$
And call the outputs d_{i}.	0	1	1	$\mathrm{~d}_{3}$
Now we have	$\mathbf{1}$	0	0	$\mathrm{~d}_{4}$
2^{8} choices for G.	$\mathbf{1}$	0	1	$\mathrm{~d}_{5}$
Notice that $2^{8}=2^{\left(2^{3}\right)}$.	$\mathbf{1}$	$\mathbf{1}$	0	$\mathrm{~d}_{6}$
	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathrm{~d}_{7}$

N Bits of Input Can be Combined into Many Functions

Can we generalize to N bits?
Without drawing a truth table, please?
N bits means 2^{N} rows in the truth table.
Thus we need 2^{N} Boolean values (bits) to specify a function.
Thus $2^{\left(2^{\mathrm{N}}\right)}$ possible functions on N bits.

We Need More Functions!

So why did we teach you only four functions?
(AND, OR, NOT, and XOR)

Your homework for next time:
Write down and name all functions on 10 bits.
Include a truth table for each function!

Alternate Homework: Understand Logical Completeness

Claim:

With enough 2-input AND, 2-input OR, and NOT functions, one can produce any function on any number of variables.
Believe me?
Proof: by construction
In other words, I'll show you how to produce an arbitrary function on an arbitrary number of variables.

Compose Functions to Produce Functions on More Inputs

Let's start the proof.

Use 2-Input Gates to Construct N-Input Gates

By induction, we build an N -input AND gate.
Base case ($\mathrm{N}=2$): Use one 2-input AND.
$\mathrm{N}+1$ case (given an N -input AND):

- Use one N-input AND
- and one 2 -input AND
- to produce an ($\mathrm{N}+1$)-input AND.

The Claim is Now Slightly Simpler

Claim:

With enough 2-input AND, 2-input OR, and NOT
functions, I can produce any function on any number of variables.
(For OR functions, use the same approach as we did with AND functions, replacing AND with OR.)
Let's first consider functions that

- produce an output of 1
- for exactly one combination of inputs (one row of the function's truth table).

Comments on Functional Form and Practical Value

A couple of comments before we continue...

- Functional form of the inductive proof:
- base: $\mathrm{AND}_{2}(\mathrm{~A}, \mathrm{~B})=\mathrm{AND}_{2}(\mathrm{~A}, \mathrm{~B})$
- inductive step:

$$
\begin{aligned}
& \mathrm{AND}_{\mathrm{N}+1}\left(\mathrm{~A}_{0}, \ldots, \mathrm{~A}_{\mathrm{N}}\right)= \\
& \quad \mathrm{AND}_{2}\left(\mathrm{AND}_{\mathrm{N}}\left(\mathrm{~A}_{0}, \ldots, \mathrm{~A}_{\mathrm{N}-1}\right), \mathrm{A}_{\mathrm{N}}\right)
\end{aligned}
$$

- This approach is an existence proof, not a practical way to build bigger gates.

One AND Suffices for Functions that Output One 1

The function $\mathbf{Q}(\mathbf{A}, \mathrm{B}, \mathrm{C})$ is an	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{Q}
example of such a function.	0	0	0	0
When is $\mathrm{Q}=1 ?$	0	0	1	0
Only when	0	1	0	0
$\mathrm{~A}=1$ AND $\mathrm{B}=0$ AND $\mathrm{C}=1$.	0	1	1	0
Note that $\mathrm{B}=0$ when	1	0	0	0
(NOT B) $=1$.	1	0	1	1
In other words, $\mathbf{Q}=\mathbf{A B} \mathbf{C}$.	1	1	0	0
	1	1	1	0

Arbitrary Functions Require Only Two Steps

To produce an arbitrary function (which may produce the value 1 for more than one combination of inputs):

1. For each combination of inputs for which the function produces a 1, AND together the corresponding inputs or inverted inputs.*
2. OR together the results of all AND functions.

* The resulting AND is called a minterm on the input variables.

A Sum-of-Products Can Express Any Function

The construction described results in a sum-of-products form because

- we produce each row of the truth table with an AND (product / multiplication notation) - we produce the final function by ORing the ANDs (sum / addition notation).
The approach described is often inefficient, but it always works.

ECE 120: Introdet
2016 Steven S. Lumetta. All rights reserved.
slide 14

Why Do You Care? Abstraction!

Imagine working on a new device technology.

- Maybe it's based on DNA.
- Maybe it's based on new semiconductors.
- Maybe it's based on carbon nanotubes.
- Maybe you're still finishing your degree?!

What do you need to be able to build in order to replace the current technology?
AND, OR, and NOT.
Other people can then build higher layers of abstraction!

Example: 3-input XOR

Let's build XOR as an example.		B	C	X
	0	0	0	0
First, write the truth table.	0	0	1	1
What function produces	0	1	0	1
this row? ${ }^{\prime} \mathrm{B}^{\prime} \mathrm{C}$	0	1	1	0
And this row? $\mathbf{A}^{\prime} \mathbf{B C}^{\prime}$	1	0	0	1
And this one? AB' ${ }^{\prime}$	1	0	1	0
And this one? ABC	1	1	0	0
	1	1	1	1

3-input XOR Expressed Using AND, OR, and NOT
Putting these four functions together, we obtain:

A XOR B XOR C =

$$
A^{\prime} B^{\prime} C+A^{\prime} B C^{\prime}+A B^{\prime} C^{\prime}+A B C
$$

Now we are ready to begin building devices such as adders and comparators to manipulate our representations...

