

Two Bits of Input Can be Combined into 16 Functions	Three Bits of Input Can be Combined into 256 Functions
Write a truth table for $\mathbf{C} = \mathbf{F}(\mathbf{A}, \mathbf{B})$.	What about N=3: A B C D
But instead of filling in values, A B C	$D = G(A,B,C)? 0 0 d_0$
call the outputs \mathbf{c}_i . 0 0 \mathbf{c}_0	We can again write 0 0 1 d ₁
The four \mathbf{c}_i values 0 1 \mathbf{c}_1	a truth table. $0 \ 1 \ 0 \ d_2$
uniquely specify \mathbf{F} . 1 0 \mathbf{C}_2	And call the outputs \mathbf{d}_i . 0 1 1 \mathbf{d}_3
If we change any \mathbf{c}_{i} ,	Now we have $1 \ 0 \ 0 \ d_4$
we get a different function. $1 1 c_3$	$2^{8} \text{ choices for G.} \qquad 1 0 1 \mathbf{d}_{5}$
We thus have $2 \times 2 \times 2 \times 2 = 2^4$ choices for F.	Notice that $2^8 = 2^{(2^3)}$. 1 1 0 d ₆
	1 1 1 d ₇
ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 3	ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 4


```
ECE 120: Introduction to Computing
```

© 2016 Steven S. Lumetta. All rights reserved.

slide 5

© 2016 Steven S. Lumetta. All rights reserved.

slide 6

The Claim is Now Slightly Simpler	One AND Suffices for Functions that Output One 1
Claim:	The function Q(A,B,C) is an A B C Q
With enough <u>2-input</u> AND, <u>2-input</u> OR, and NOT functions, I can produce any function on any	example of such a function. 0 0 0
functions, I can produce any function on any number of variables.	When is Q=1 ? 0 0 1 0
(For OR functions, use the same approach as we	Only when 0 1 0
did with AND functions, replacing AND with OR.)	A=1 AND B=0 AND C=1. 0 1 1 0
Let's first consider functions that	Note that B=0 when 1 0 0
 produce an output of 1 for exactly one combination of inputs 	(NOT B) = 1. 1 0 1 1
(one row of the function's truth table).	In other words, $\mathbf{Q} = \mathbf{AB'C}$. 1 1 0 0
	1 1 1 0
ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 11	ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 12

© 2016 Steven S. Lumetta. All rights reserved.

ECE 120: Introduction to Computing

 Arbitrary Functions Require Only Two Steps To produce an arbitrary function (which may produce the value 1 for more than one combination of inputs): 1. For each combination of inputs for which the function produces a 1, AND together the corresponding inputs or inverted inputs.* 2. OR together the results of all AND functions. * The resulting AND is called a minterm on the input variables. 	A Sum-of-Products Can Express Any Function The construction described results in a sum-of-products form because • we produce each row of the truth table with an AND (product / multiplication notation) • we produce the final function by ORing the ANDs (sum / addition notation). The approach described is often inefficient, but it always works.
ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 13	ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 14

(AND, OR, NOT) is Logically Complete Definition: The set (AND, OR, NOT) is logically complete because, as we showed, any Boolean logic function on any number of inputs can be produced using only AND, OR, and NOT. To show that another set is logically complete • You need not construct arbitrary functions. • You need only show how to construct AND, OR, and NOT.	 Why Do You Care? Abstraction! Imagine working on a new device technology. Maybe it's based on DNA. Maybe it's based on new semiconductors. Maybe it's based on carbon nanotubes. Maybe you're still finishing your degree?! What do you need to be able to build in order to replace the current technology? AND, OR, and NOT. Other people can then build higher layers of abstraction!
ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 15	ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 16

