

Adding Two Non-Negative Patterns Can Overflow

Let's start with our first example from before:

11 01110 (14) + 00100 (4) 10010 (-14)

Oops! We had no carry out, but the answer is wrong (an overflow occurred).

So overflow is different than for **unsigned**...

Carry Out Does Not Indicate 2's Complement Overflow

This example overflowed when the bits were interpreted with an **unsigned** representation.

We have no 211 space for 01110 (14) + 10101 (-11; 21 unsigned) 00011 (3)

But here the answer is still correct!

Carry out \neq overflow for 2's complement.

ECE 120: Introduction to Computing

Adding Non-Negative to Negative Can Never Overflow	Long Definition for Overflow of 2's Complement Addition
Claim: Addition of two N-bit 2's complement bit patterns can not overflow if one pattern is negative (starts with 1) and the other pattern is non-negative (starts with 0). Proof: You do it! And THEN you can read the proof in the notes.	 Add two N-bit 2's complement patterns. A a_{N-2} a₀ (sign bit is A) + B b_{N-2} b₀ (sign bit is B) S s_{N-2} s₀ (sign bit is S) Claim: The addition overflows iff one of the following holds: 1. The two addends are non-negative, and the sum is negative. 2. The two addends are negative, and the sum is non-negative.
ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 5	ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 6

We Use Only a Few Boolean Functions	A Truth Table Fully Defines a Boolean Function			
AND: the ALL function returns 1 iff ALL inputs are 1 (otherwise 0) OR: the ANY function returns 1 iff ANY input is 1 (otherwise 0) NOT: logical complement (NOT 0) is 1; (NOT 1) is 0 XOR: the ODD function returns 1 iff an ODD number of inputs are 1 (otherwise 0)	The drawing to the right is a truth table.ABCA truth table allows us to00• define a Boolean function C01• by listing the output value01• for all combinations of inputs (here A and B, in base 2 order).11Let's write truth tables for our four Boolean functions.11			
ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 9	ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 10			

Use Definitions to Generalize to More than Two Operands

Generalize to more	Α	В	С	A⊕B⊕C
operands using the	0	0	0	0
definitions given:	0	0	1	1
• AND: ALL	0	1	0	1
°UK: ANY	0	1	1	0
•XOK: ODD	1	0	0	1
As an example, fill the	1	0	1	0
truth table for a	1	1	<u>^</u>	0
5-mput XOR.	1	T	1	0
	1	1	1	

Generalize to Sets of Bits by Pairing Bits

We can also generalize to sets of bits. For example, if we have two N-bit patterns, $A=a_{N-1}...a_0$ and $B=b_{N-1}...b_0$,

we can write

C = A AND B

To mean that

if $C = c_{N-1} \dots c_0$, $c_i = a_i b_i$ for $0 \le i \le N$.

Don't Mix Algebras:	Use AND/OR/NOT for Bitwi	se Logic
If A is a 2's complem	ent bit pattern, we	
might also write $-A = 0$	(NOT A) + 1	
Be careful about mixir	ng	
• algebraic notation fo	r Boolean functions	
• with arithmetic oper	rations.	
The "+" in the equation	n above means	
base 2 addition (and d	iscarding any	
carry out), not OR.		
ECE 120: Introduction to Computing	© 2016 Steven S. Lumetta. All rights reserved.	slide 17