University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering

ECE 120: Introduction to Computing

2's Complement Overflow and
 Boolean Logic

Example: Addition of Unsigned Bit Patterns

A question for you:
What is the overflow condition for addition of two N-bit 2's complement bit patterns?
(That is, when is the sum incorrect?)
Remember that addition works exactly the same way as with N-bit unsigned bit patterns, so we can do some base 2 addition to find the answer.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved.

Adding Two Non-Negative Patterns Can Overflow

Let's start with our first example from before:

$$
\begin{aligned}
& 11 \\
& 01110(14) \\
& +00100(4) \\
& \hline 10010(-14)
\end{aligned}
$$

Oops! We had no carry out, but the answer is wrong (an overflow occurred).

So overflow is different than for unsigned...

Carry Out Does Not Indicate 2's Complement Overflow

This example overflowed when the bits were interpreted with an unsigned representation.

```
We have no (2)11
    space for 01110 (14)
        that bit! 01110 (14)
    + 10101 (-11;21 unsigned)
    00011 (3)
```

But here the answer is still correct!
Carry out \neq overflow for 2 's complement.

Adding Non-Negative to Negative Can Never Overflow

Claim:

Addition of two N-bit 2's complement bit patterns can not overflow if one pattern is negative (starts with 1) and the other pattern is non-negative (starts with 0).
Proof: You do it!
And THEN you can read the proof in the notes.

Long Definition for Overflow of 2's Complement Addition

Add two N-bit 2's complement patterns.
A $a_{N-2} \ldots a_{0}$ (sign bit is A)
$+B b_{N-2} \ldots b_{0}$ (sign bit is B)
$\mathbf{S} \mathbf{S}_{\mathrm{N}-2} \ldots \mathbf{S}_{0}$ (sign bit is S)
Claim: The addition overflows iff one of the following holds:

1. The two addends are non-negative, and the sum is negative.
2. The two addends are negative, and the sum is non-negative.

Boolean Algebra Gives a More Concise Expression

That's a lot of words!
Boolean algebra gives a more concise form:
OVERFLOW =
[(NOT A) AND (NOT B) AND S] OR
[A AND B AND (NOT S)]
(Remember: A, B, and S were the sign bits.)
But what do these operators (AND, OR, and NOT) mean?

Boolean Operators Were Invented in the mid-19 ${ }^{\text {th }}$ Century

Boolean operators were invented (by George Boole) to reason about logical propositions.
They originally operated on true/false values.
We use them with ... that's right, bits!

$$
0=\text { false and } 1=\text { true }
$$

Be careful not to confuse Boolean operators with English words. The meanings are not identical.

We Use Only a Few Boolean Functions

AND: the ALL function
returns 1 iff ALL inputs are 1 (otherwise 0)
OR: the ANY function
returns 1 iff ANY input is 1 (otherwise 0)
NOT: logical complement
(NOT 0) is 1 ; (NOT 1) is 0
XOR: the ODD function
returns 1 iff an ODD number of inputs
are 1 (otherwise 0)

A Truth Table Fully Defines a Boolean Function

The drawing to the right is a truth table.
A truth table allows us to - define a Boolean function C - by listing the output value - for all combinations of inputs (here A and B, in base 2 order).

\mathbf{A}	\mathbf{B}	\mathbf{C}
0	0	
0	1	
1	0	
1	1	

Let's write truth tables for our four Boolean functions.

AND: The ALL Function

OR: The ANY Function

And now OR.	A B	A OR B
OR can also be written in other ways:	00	0
	01	1
$\begin{array}{l\|l} \circ \mathrm{A}+\mathrm{B} & \begin{array}{l} \text { We usually } \\ \text { use this one. } \end{array} \end{array}$	$\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}$	1
- $\mathbf{A} \vee \mathrm{B}$ (math. disjunction)	11	1
Note rounded in pointed out		-A+B

NOT: Logical Complement

And now NOT.		A	NOT A
NOT can also be written in other ways:		0	1
		1	0
$\stackrel{\circ}{\circ}{ }^{\circ}{ }^{\prime} \left\lvert\, \begin{array}{ll}\text { We usually } \\ \text { use these. }\end{array}\right.$ - \neg A (math. complement)			

XOR: The ODD Function

And, finally, XOR.	A	\mathbf{B}	A XOR B
XOR is usually written this way: $A \oplus B$	0	0	0
	0	1	1
1	0	1	
	1	1	0

ECE 120: Introduction to Computing $\quad \bigcirc 2016$ Steven S. Lumetta. All rights reserved.
slide 14

Use Definitions to Generalize to More than Two Operands

Generalize to more	\mathbf{A}	\mathbf{B}	\mathbf{C}	$\mathbf{A} \oplus \mathbf{B} \oplus \mathbf{C}$
operands using the definitions given:	0	0	0	0
- AND: ALL	0	0	1	1
\circ OR: ANY	0	1	0	1
\circ XOR: ODD	0	1	1	0
As an example, fill the	1	0	0	1
truth table for a	1	0	1	0
3-input XOR.	1	1	0	0
	1	1	1	1

Generalize to Sets of Bits by Pairing Bits

We can also generalize to sets of bits.
For example, if we have two N -bit patterns,

$$
\mathrm{A}=\mathrm{a}_{\mathrm{N}-1} \ldots \mathrm{a}_{0} \text { and } \mathrm{B}=\mathrm{b}_{\mathrm{N}-1} \ldots \mathrm{~b}_{0}
$$

we can write

$$
\mathrm{C}=\mathrm{A} \text { AND } \mathrm{B}
$$

To mean that

$$
\text { if } \mathrm{C}=\mathrm{c}_{\mathrm{N}-1} \ldots \mathrm{c}_{0}, \mathrm{c}_{\mathrm{i}}=\mathrm{a}_{\mathrm{i}} \mathrm{~b}_{\mathrm{i}} \text { for } 0 \leq \mathrm{i}<\mathrm{N} \text {. }
$$

Don't Mix Algebras: Use AND/OR/NOT for Bitwise Logic

If A is a 2 's complement bit pattern, we might also write $-\mathrm{A}=($ NOT A $)+1$
Be careful about mixing

- algebraic notation for Boolean functions - with arithmetic operations.

The " + " in the equation above means base 2 addition (and discarding any carry out), not OR.

