
University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering

ECE 120: Introduction to Computing

2’s Complement Overflow and
Boolean Logic

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 1

Example: Addition of Unsigned Bit Patterns

A question for you:

What is the overflow condition for
addition of two N-bit 2’s complement
bit patterns?

(That is, when is the sum incorrect?)

Remember that addition works exactly the
same way as with N-bit unsigned bit
patterns, so we can do some base 2
addition to find the answer.

ECE 120: Introduction to Computing slide 2© 2016 Steven S. Lumetta. All rights reserved.

Adding Two Non-Negative Patterns Can Overflow

Let’s start with our first example from before:

01110 (14)
+ 00100 (4)

Oops! We had no carry out, but the answer is
wrong (an overflow occurred).

So overflow is different than for unsigned…

ECE 120: Introduction to Computing slide 3

011

1

0

1

0 (-14)

© 2016 Steven S. Lumetta. All rights reserved.

Carry Out Does Not Indicate 2’s Complement Overflow

This example overflowed when the bits were
interpreted with an unsigned representation.

01110 (14)
+ 10101 (-11; 21 unsigned)

But here the answer is still correct!

ECE 120: Introduction to Computing slide 4

11

1

0

1

0 (3)

© 2016 Steven S. Lumetta. All rights reserved.

0

1We have no
space for
that bit!

Adding Non-Negative to Negative Can Never Overflow

Claim:

Addition of two N-bit 2’s complement bit
patterns can not overflow if one pattern is
negative (starts with 1) and the other pattern
is non-negative (starts with 0).

Proof:

And THEN you can read the proof in the
notes.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 5

You do it!

Long Definition for Overflow of 2’s Complement Addition

Add two N-bit 2’s complement patterns.
A aN-2 … a0 (sign bit is A)

+ B bN-2 … b0 (sign bit is B)
S sN-2 … s0 (sign bit is S)

Claim: The addition overflows iff one of the
following holds:
1. The two addends are non-negative,

and the sum is negative.
2. The two addends are negative,

and the sum is non-negative.

ECE 120: Introduction to Computing slide 6© 2016 Steven S. Lumetta. All rights reserved.

Boolean Algebra Gives a More Concise Expression

That’s a lot of words!

Boolean algebra gives a more concise form:

OVERFLOW =
[(NOT A) AND (NOT B) AND S] OR
[A AND B AND (NOT S)]

(Remember: A, B, and S were the sign bits.)

But what do these operators (AND, OR, and
NOT) mean?

ECE 120: Introduction to Computing slide 7© 2016 Steven S. Lumetta. All rights reserved.

Boolean Operators Were Invented in the mid-19th Century

Boolean operators were invented (by George
Boole) to reason about logical propositions.

They originally operated on true/false values.

We use them with … that’s right, bits!

0 = false and 1 = true

Be careful not to confuse Boolean operators
with English words. The meanings are not

ECE 120: Introduction to Computing slide 8© 2016 Steven S. Lumetta. All rights reserved.

We Use Only a Few Boolean Functions

AND: the ALL function
returns 1 iff ALL inputs are 1 (otherwise 0)

OR: the ANY function
returns 1 iff ANY input is 1 (otherwise 0)

NOT: logical complement
(NOT 0) is 1; (NOT 1) is 0

XOR: the ODD function
returns 1 iff an ODD number of inputs
are 1 (otherwise 0)

ECE 120: Introduction to Computing slide 9© 2016 Steven S. Lumetta. All rights reserved.

A Truth Table Fully Defines a Boolean Function

The drawing to the right is
a truth table.

A truth table allows us to
define a Boolean function C
by listing the output value
for all combinations of inputs
(here A and B, in base 2 order).

Let’s write truth tables for our
four Boolean functions.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 10

A B C

0 0

0 1

1 0

1 1

AND: The ALL Function

Let’s start with AND.

AND can be written in
several ways:

AB
A·B
A×B
A^B (math. conjunction)

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 11

A B A AND B

0 0

0 1

1 0

1 1

0

0

0
1

A
B AB

We usually
use these.

Note flat input,
rounded output.

OR: The ANY Function

And now OR.

OR can also be written
in other ways:

A + B

A B (math. disjunction)

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 12

A B A OR B

0 0

0 1

1 0

1 1

0

1

1
1

We usually
use this one.

Note rounded input,
pointed output.

A
B A+B

NOT: Logical Complement

And now NOT.

NOT can also be written
in other ways:

A’
A

A (math. complement)

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 13

A NOT A

0

1

1

0
We usually
use these.

Note triangle and
inversion bubble.

A A’

XOR: The ODD Function

And, finally, XOR.

XOR is usually written
this way: A B

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 14

A B A XOR B

0 0

0 1

1 0

1 1

0

1

1
0

Note: like OR, but
double line for inputs.

A
B A B

Use Definitions to Generalize to More than Two Operands

Generalize to more
operands using the
definitions given:

AND: ALL
OR: ANY
XOR: ODD

As an example, fill the
truth table for a
3-input XOR.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 15

A B C A B C
0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0

1

0

1

1

0

1

0

Generalize to Sets of Bits by Pairing Bits

We can also generalize to sets of bits.

For example, if we have two N-bit patterns,

A=aN-1…a0 and B=bN-1…b0,

we can write

C = A AND B

To mean that

if C=cN-1…c0, ci = aibi for i < N.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 16

Don’t Mix Algebras: Use AND/OR/NOT for Bitwise Logic

If A is a 2’s complement bit pattern, we
might also write -A = (NOT A) + 1

Be careful about mixing
algebraic notation for Boolean functions
with arithmetic operations.

The “+” in the equation above means
base 2 addition (and discarding any
carry out), not OR.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 17

