University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering
ECE 120: Introduction to Computing

Signed Integers and 2's Complement

Strategy: Use Common Hardware for Two Representations

Recall:

- addition of bit patterns in

N-bit unsigned representations

- corresponds to arithmetic mod 2^{N}.

Using this arithmetic, we develop the 2 's complement representation for signed integers.
The same hardware can then perform arithmetic for both representations.

What about the name? Later.

ECE 120: Introduction to Computing \quad O2016 Steven S. Lumetta. All rights reserved.
slide 2

Graphical Illustration of Modular Arithmetic

The circle illustrates 3 -bit unsigned.
Adding a number corresponds to counting clockwise.
The answer is always correct $\bmod 8$.

Representations Must be Unambiguous

The same circle illustrates equality mod 8 .
For example, we can extend the numbers in a clockwise direction. Or the other way.
Overflow occurs because -3,
 only one value per bit pattern.

We Can Choose Any Meaning for a Bit Pattern

But what if we pick a different set of labels?

The arithmetic doesn't change.
Let's include both positive and negative numbers!
And try some addition.

That's One Way to Define 2's Complement

Draw a circle for N bits (2^{N} points).
Starting at 0 at the top.
Write unsigned bit patterns clockwise around the circle.

Starting again from 0,

- find bit patterns for negative numbers
- by moving counter-clockwise.

What about the name? Later.

ECE 120 . Introduction Computing \quad 2016 Steven S. Lumetta. All rights reserved.
© 2016 Steven S. Lumetta. All rights reserved.
slide 6

2's Complement Can Also be Derived Algebraically

We can also define N-bit 2's complement algebraically.
An adder for N -bit unsigned gives

$$
\operatorname{SUM}_{\mathrm{N}}(\mathrm{~A}, \mathrm{~B})=\mathrm{A}+\mathrm{B} \bmod 2^{\mathrm{N}}
$$

N-bit 2's complement includes positive numbers in the range [$1,2^{\mathrm{N}-1}-1$]. These bit patterns all start with a " 0 " bit.
We need to find bit patterns for negative numbers.

Properties Needed for Negative Number Bit Patterns

For each number $\mathrm{K}, 0<\mathrm{K}<2^{\mathrm{N}-1}$,
${ }^{\circ}$ we want to find an N -bit pattern P_{K}, $0 \leq \mathrm{P}_{\mathrm{K}}<2^{\mathrm{N}}$,

- such that for any integer M,

$$
\left(-K+M=P_{K}+M\right) \bmod 2^{N}
$$

The bit pattern \mathbf{P}_{K} then produces the same results as - \mathbf{K} when used with unsigned arithmetic.

Also, P_{K} must not be used by a number ≥ 0.

Do Algebra to Define Negative Patterns

Starting with our property,

$$
\left(-K+M=P_{K}+M\right) \bmod 2^{N},
$$

subtract M from both sides to obtain

$$
\left(-K=P_{K}\right) \bmod 2^{\mathrm{N}} .
$$

Next, note that

$$
\left(2^{\mathrm{N}}=0\right) \bmod 2^{\mathrm{N}} .
$$

Now add the last two equations to obtain

$$
\left(2^{\mathrm{N}}-\mathrm{K}=\mathrm{P}_{\mathrm{K}}\right) \bmod 2^{\mathrm{N}} .
$$

Negating Twice Gives an Identity Operation

Let's do a sanity check.
What is the bit pattern for - (-K)?
We know that $-\mathbf{K}$ is $\mathbf{2}^{\mathrm{N}}-\mathbf{K}$.
Substituting once, we obtain - $\left(2^{\mathrm{N}}-\mathrm{K}\right)$.
Substituting again, we obtain $2^{\mathrm{N}}-\left(2^{\mathrm{N}}-\mathrm{K}\right)$.
But that's just \mathbf{K}, as we expect.
What name? Oh, " 2 's complement?"

Final Answer: - K is Represented by $2^{\mathrm{N}}-\mathrm{K}$

One easy solution to $\left(2^{\mathrm{N}}-\mathrm{K}=\mathrm{P}_{\mathrm{K}}\right) \bmod 2^{\mathrm{N}}$ is $\mathrm{P}_{\mathrm{K}}=2^{\mathrm{N}}-\mathrm{K}$.
Since $0<K<2^{\mathrm{N}-1}$, this solution gives $2^{\mathrm{N}-1}<\mathrm{P}_{\mathrm{K}}<2^{\mathrm{N}}$.
But these are all unused bit patterns-the patterns starting with "1!"
So we're done:
-K is represented by the pattern $2^{\mathrm{N}}-\mathrm{K}$.
What about the name? Are you really ready?
-

2's Complement is 1's Complement Plus One!

Again for $\mathrm{N}=5$:

$$
\begin{array}{r}
11111\left(2^{\mathrm{N}}-1\right) \\
-\quad ? ? ? ? ?(\mathrm{~K}) \\
\hline \text { (answer) } \\
+\quad 1 \\
\hline
\end{array}
$$

The first step is trivial: replace 0 with 1 , and 1 with 0 . The result $\left(\left(2^{\mathrm{N}}-1\right)-\mathbf{K}\right)$ is called the 1 's complement of K.
Adding 1 more gives the 2 's complement.

Distinguish 2's Complement from Negation

Here or elsewhere, you will hear the phrase "take the 2's complement."
We will try not to use " 2 's complement" in that way.
Students get confused between the
2's complement representation for signed integers and the operation of negation on a bit pattern for a number represented with 2 's complement.
For clarity, we suggest that you do the same.

Example: Negating a Number in 2's Complement

Let's do an example of negation with
8-bit 2's complement.
As you know, I like 42.
As you may remember, $42_{10}=00101010$.
So what's -42 ?
First, complement the bits: 11010101.
Then add 1: $11010110=-42_{10}$!

2's Complement Conversion Can Be Same as Unsigned

For non-negative numbers (bit patterns starting with 0),
conversion between decimal value and 2's complement bit pattern
is identical to conversion for the unsigned representation.

Use Two Negations to Convert Negative Numbers

To convert decimal $\mathrm{D}<0$ to 2's complement,

- first convert -D (as unsigned),
- then negate the resulting bit pattern.

To convert a negative 2's complement bit pattern (a bit pattern starting with 1) to decimal,

- first negate the bit pattern,
- then convert to decimal D (as unsigned).
- The answer is -D.

Alternate Method for Calculating 2's Complement Values

If we have a negative number -K, we can use the base 2 polynomial to calculate $2^{\mathrm{N}}-\mathrm{K}$:

$$
2^{\mathrm{N}}-\mathrm{K}=\mathrm{a}_{\mathrm{N}-1} 2^{\mathrm{N}-1}+\mathrm{a}_{\mathrm{N}-2} 2^{\mathrm{N}-2}+\ldots+\mathrm{a}_{0} 2^{0}
$$

We know that $\mathbf{a}_{\mathrm{N}-1}=1$ for a negative number. Substituting and subtracting 2^{N} gives:

$$
\begin{gathered}
-K=\left(2^{\mathrm{N}-1}-2^{\mathrm{N}}\right)+\mathrm{a}_{\mathrm{N}-2} 2^{2 \mathrm{~N}-2}+\ldots+\mathrm{a}_{0} 2^{0} \\
-\mathrm{K}=-\mathrm{a}_{\mathrm{N}-1} 2^{\mathrm{N}-1}+\mathrm{a}_{\mathrm{N}-2} 2^{\mathrm{N}-2}+\ldots+\mathrm{a}_{0} 2^{0}
\end{gathered}
$$

This polynomial also works when $\mathbf{a}_{\mathrm{N}-1}=0$.

What about the Last Bit Pattern?

We didn't define a value for one of the bit patterns! What should it be? $2^{\mathrm{N}-1}$? $-2^{\mathrm{N}-1}$? Undefined? In 2's complement, the pattern always means - $2^{\mathrm{N}-1}$
Why? So that any pattern starting with a 1 is negative!

Extend Unsigned Bit Patterns by ...

In some cases, we need

- to convert a bit pattern
- from a smaller representation (fewer bits)
- to a larger one (more bits)

How do we convert N -bit unsigned to $(\mathrm{N}+\mathrm{k})$-bit unsigned (for $\mathrm{k}>0$)?
Hint: We already had to solve a similar problem when a number does not require N bits in base 2 .
Add k more leading 0 s (called zero extension).

What about 2's Complement?

How do we convert N-bit 2's complement to ($\mathrm{N}+\mathrm{k}$)-bit 2's complement (for $\mathrm{k}>0$)?
For non-negative values,

- 2's complement is the same as unsigned (with an extra 0 for the sign)
${ }^{\circ}$ So add k more leading 0s.

What about negative values?

Extend 2's Complement Bit Patterns by ...

In 5-bit 2's complement,
-5_{10} has bit pattern 11011
-10_{10} has bit pattern 10110 (spaces added to
And in 8-bit 2's complement? help us humans)
-5_{10} has bit pattern 11111011
-10_{10} has bit pattern 11110110
So how do we convert N -bit 2's complement to ($\mathrm{N}+\mathrm{k}$)-bit 2's complement (for $\mathrm{k}>0$)?
Add k copies of the sign bit (called sign extension).

