

2's Complement Can Also be Derived Algebraically

We can also define **N-bit 2's complement** algebraically.

An adder for **N-bit unsigned** gives

 $SUM_N(A,B) = A + B \mod 2^N$

N-bit 2's complement includes positive numbers in the range $[1, 2^{N-1} - 1]$. These bit patterns all start with a "0" bit.

We need to find bit patterns for negative numbers.

Properties Needed for Negative Number Bit Patterns

For each number K, $0 < K < 2^{N-1}$, \circ we want to find an N-bit pattern P_K , $0 \le P_K < 2^N$, \circ such that for any integer M,

 $(-K + M = P_K + M) \mod 2^N$

The bit pattern $\mathbf{P}_{\mathbf{K}}$ then produces the same results as **-K** when used with unsigned arithmetic.

Also, P_{K} must not be used by a number ≥ 0 .

ECE 120: Introduction to Computing

Do Algebra to Define Negative Patterns Starting with our property, $(-K + M = P_K + M) \mod 2^N$, subtract M from both sides to obtain $(-K = P_K) \mod 2^N$. Next, note that $(2^N = 0) \mod 2^N$. Now add the last two equations to obtain $(2^N - K = P_K) \mod 2^N$.	Final Answer: -K is Represented by $2^{N} - K$ One easy solution to $(2^{N} - K = P_{K}) \mod 2^{N}$ is $P_{K} = 2^{N} - K$. Since $0 < K < 2^{N-1}$, this solution gives $2^{N-1} < P_{K} < 2^{N}$. But these are all unused bit patterns—the patterns starting with "1!" So we're done: -K is represented by the pattern $2^{N} - K$. What about the name? Are you really ready?
ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 9	ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 10

Negating Twice Gives an Identity Operation

Let's do a sanity check. What is the bit pattern for - (-K)? We know that -K is $2^N - K$. Substituting once, we obtain - $(2^N - K)$. Substituting again, we obtain $2^N - (2^N - K)$. But that's just K, as we expect. What name? Oh, "2's complement?"

Is There an Easy Way to Find -K?

How do we calculate $2^N - K$? We can subtract (for example, with N=5)...

 $\begin{array}{c} 100000 \quad (2^{N}) \\ - ????? \quad (K) \end{array}$

But that seems painful. Instead, notice that $2^N = (2^N - 1) + 1$. So we can calculate $(2^N - 1) - K + 1$.

slide 11

2's Complement is 1's Complement Plus One! Again for N=5: $11111 (2^N - 1)$ - ????? (K) (answer) + 1 The first step is trivial: replace 0 with 1, and 1 with 0. The result ($(2^N - 1) - K$) is called the 1's complement of K. Adding 1 more gives the 2's complement.	Distinguish 2's Complement from Negation Here or elsewhere, you will hear the phrase "take the 2's complement." We will try not to use "2's complement" in that way . Students get confused between the 2's complement representation for signed integers and the operation of negation on a bit pattern for a number represented with 2's complement. For clarity, we suggest that you do the same.
ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 13	ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 14

ECE 120: Introduction to Computing

What about 2's Complement? How do we convert N-bit 2's complement to (N+k)-bit 2's complement (for k > 0)? For non-negative values, • 2's complement is the same as unsigned (with an extra 0 for the sign) • So add k more leading 0s. What about negative values?	Extend 2's Complement Bit Patterns by In 5-bit 2's complement, -5_{10} has bit pattern 11011 -10_{10} has bit pattern 10110 And in 8-bit 2's complement? -5_{10} has bit pattern 111 11011 -10_{10} has bit pattern 111 11011 -5_{10} has bit pattern 111 10110 So how do we convert N-bit 2's complement to (N+k)-bit 2's complement (for k > 0)? Add k copies of the sign bit
ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 21	(called sign extension). ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 22