

What about Converting from Decimal?	Use the Same Polynomial to Convert from Decimal The decimal number is given by
represents a decimal number D using an unsigned representation? Seem harder?	$\mathbf{D} = \mathbf{a}_5 2^5 + \mathbf{a}_4 2^4 + \mathbf{a}_3 2^3 + \mathbf{a}_2 2^2 + \mathbf{a}_1 2^1 + \mathbf{a}_0 2^0$ All terms in the sum except for the last are even (they are multiples of 2).
Again, name our bits a _i . In the unsigned representation, every bit pattern represents a different number. Thus the a _i that represent D are unique.	So, if D is odd, $\mathbf{a}_0 = 1$. And if D is even, $\mathbf{a}_0 = 0$. We subtract out \mathbf{a}_0 , divide by 2, and use the same reasoning until we run out of digits.
ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 9	ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 10

Example: the Unsigned Bit Pattern for $D = 37$.	Example: the Unsigned Bit Pattern for $D = 37$.
$37 = a_5 2^5 + a_4 2^4 + a_3 2^3 + a_2 2^2 + a_1 2^1 + a_0 2^0$	$9 = a_5 2^3 + a_4 2^2 + a_3 2^1 + a_2 2^0$
37 is odd, so $\mathbf{a}_0 = 1$.	9 is odd, so $\mathbf{a}_2 = 1$.
$(37-1)/2 = (a_52^5 + a_42^4 + a_32^3 + a_22^2 + a_12^1)/2$	$(9-1)/2 = (a_5 2^3 + a_4 2^2 + a_3 2^1)/2$
$18 = a_5 2^4 + a_4 2^3 + a_3 2^2 + a_2 2^1 + a_1 2^0$	$4 = a_5 2^2 + a_4 2^1 + a_3 2^0$
18 is even, so $\mathbf{a}_1 = 0$.	4 is even, so $\mathbf{a}_3 = 0$.
$(18 - 0)/2 = (a_5 2^4 + a_4 2^3 + a_3 2^2 + a_2 2^1)/2$	$(4-0)/2 = (a_5 2^2 + a_4 2^1)/2$
$9 = a_5 2^3 + a_4 2^2 + a_3 2^1 + a_2 2^0$	$2 = a_5 2^1 + a_4 2^0$

Example: the Unsigned Bit Pattern for $D = 37$.	Example: the Unsigned Bit Pattern for $D = 137$.
$2 = a_5 2^1 + a_4 2^0$	We don't need to write the polynomial
2 is even, so $a_4 = 0$. $(2 - 0)/2 = (a_5 2^2)/2$ $1 = a_5 2^0$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Putting the bits together, we obtain	$(17-1)/2 = 8 \rightarrow 0$ [Nead the bits from $(8-0)/2 = 4 \rightarrow 0$ [bottom to top (and
$37_{10} = 100101$	$\begin{array}{cccc} (0 & 0) & 2 & 1 & 0 \\ (4 - 0) & 2 & = 2 & \rightarrow 0 \\ (2 - 0) & 2 & = 1 & \rightarrow 1 \\ (1 - 1) & (2 - 0) & (1 - 1) \\ \end{array}$ add leading 0s if needed).
Note, be sure to put the bits in the right order:	(1-1)/2 = 0 (done)
ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 13	ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 14