University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering

ECE 120: Introduction to Computing

The Unsigned Representation

We Can Represent Anything with Bits

Recall: All information in a computer is represented with bits.
We can represent anything with bits.* useful examples: integers real numbers human language characters (alphabet, digits, punctuation)
Important: Computers do not "know" the meaning of the bits!

* A computer only stores a finite number of bits, of course!

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved.

How Do We Decide What to Represent?

Let's think about integer (whole number) representations.

What numbers should we represent?

- Some random set?
- Everyone in our class' favorite number (mine is $42!$)?
- A contiguous set starting with 0 ?

Does the Representation Matter?

We want computers to do arithmetic.
How does a representation affect arithmetic? - Imagine that we represent numbers in the range [100, 131].

- We need 5 bits (32 different numbers).
-What happens if we add two numbers?
${ }^{\circ}$ Can we represent the sum using the same representation?
Choose a contiguous range including 0 .

[^0]
Human Representations are Good Choices

Let's borrow a human representation, base 2 from mathematics.
For example,

$$
\begin{array}{r}
17_{10}=\curvearrowright \begin{array}{r}
10001_{2} \\
42_{10} \\
101010_{2} \\
1000_{10}
\end{array}=1111101000_{2}
\end{array}
$$

The subscripts indicate the base.
But computers have no "blank" bits!

The Unsigned Representation: Base 2 with Leading 0s

Use leading 0s to fix the number of bits (to \mathbf{N}). Result: the N-bit unsigned representation. Using the 8 -bit unsigned representation,

```
    17 10 = 00010001
    42 10 = 00101010
1000}\mp@subsup{1}{10}{}=\mathrm{ Cannot be represented!
```

ECE 120: Introduction to Computing

What Can the Unsigned Representation Represent?

What range of integers can be represented with the N-bit unsigned representation?

- smallest value... all 0s
- largest value ... all 1 s

Note that $\mathbf{1 0 0} \ldots \mathbf{O O O}_{2}$ (N 0s after a 1) is 2^{N}.

The range is thus $\left[0,2^{\mathrm{N}}-1\right]$.

Use a Polynomial to Convert to Decimal

How can we calculate the decimal number represented by a bit pattern in an unsigned representation?
Remember the place values.
Let's name the bits of the bit pattern:

$$
\mathbf{a}_{5} \mathbf{a}_{4} \mathbf{a}_{3} \mathbf{a}_{2} \mathbf{a}_{1} \mathbf{a}_{0}
$$

Multiply each bit by its place value, then sum:

$$
\begin{gathered}
a_{5} 32+a_{4} 16+a_{3} 8+a_{2} 4+a_{1} 2+a_{0} 1 \\
=a_{5} 2^{5}+a_{4} 2^{4}+a_{3} 2^{3}+a_{2} 2^{2}+a_{1} 2^{1}+a_{0} 2^{0}
\end{gathered}
$$

What about Converting from Decimal?

What about finding the bit pattern that represents a decimal number \mathbf{D} using an unsigned representation?
Seem harder?
Again, name our bits a_{i}.
In the unsigned representation, every bit pattern represents a different number.
Thus the \mathbf{a}_{i} that represent \mathbf{D} are unique.

Use the Same Polynomial to Convert from Decimal

The decimal number is given by
$D=a_{5} 2^{5}+a_{4} 2^{4}+a_{3} 2^{3}+a_{2} 2^{2}+a_{1} 2^{1}+a_{0} 2^{0}$
All terms in the sum except for the last are even (they are multiples of 2).
So, if D is odd, $\mathrm{a}_{0}=1$.
And if D is even, $a_{0}=0$.
We subtract out a_{0}, divide by 2 , and use the same reasoning until we run out of digits.

Example: the Unsigned Bit Pattern for $\mathrm{D}=37$.

$$
\begin{aligned}
& 37=a_{5} 2^{5}+a_{4} 2^{4}+a_{3} 2^{3}+a_{2} 2^{2}+a_{1} 2^{1}+a_{0} 2^{0} \\
& 37 \text { is odd, so } a_{0}=1 . \\
& (37-1) / 2=\left(a_{5} 2^{5}+a_{4} 2^{4}+a_{3} 2^{3}+a_{2} 2^{2}+a_{1} 2^{1}\right) / 2 \\
& 18=a_{5} 2^{4}+a_{4} 2^{3}+a_{3} 2^{2}+a_{2} 2^{1}+a_{1} 2^{0} \\
& 18 \text { is even, so } a_{1}=0 . \\
& (18-0) / 2=\left(a_{5} 2^{4}+a_{4} 2^{3}+a_{3} 2^{2}+a_{2} 2^{1}\right) / 2 \\
& 9=a_{5} 2^{3}+a_{4} 2^{2}+a_{3} 2^{1}+a_{2} 2^{0}
\end{aligned}
$$

Example: the Unsigned Bit Pattern for $\mathrm{D}=37$.

$$
9=a_{5} 2^{3}+a_{4} 2^{2}+a_{3} 2^{1}+a_{2} 2^{0}
$$

$$
9 \text { is odd, so } \mathbf{a}_{2}=1 .
$$

$$
(9-1) / 2=\left(a_{5} 2^{3}+a_{4} 2^{2}+a_{3} 2^{1}\right) / 2
$$

$$
4=a_{5} 2^{2}+a_{4} 2^{1}+a_{3} 2^{0}
$$

$$
4 \text { is even, so } \mathbf{a}_{3}=0 .
$$

$$
(4-0) / 2=\left(a_{5} 2^{2}+a_{4} 2^{1}\right) / 2
$$

$$
2=a_{5} 2^{1}+a_{4} 2^{0}
$$

Example: the Unsigned Bit Pattern for D $=37$.
$2=a_{5} 2^{1}+a_{4} 2^{0}$
2 is even, so $\mathbf{a}_{4}=0$.
$(2-0) / 2=\left(a_{5} 2^{2}\right) / 2$
$1=\mathrm{a}_{5}{ }^{2}{ }^{0}$
Putting the bits together, we obtain

$$
37_{10}=100101
$$

Note: be sure to put the bits in the right order!

Example: the Unsigned Bit Pattern for D = 137 .
We don't need to write the polynomial...
137 (odd) $\rightarrow 1$

$(68-0) / 2=34 \rightarrow 0$
$(34-0) / 2=17 \rightarrow 1$
$(17-1) / 2=8 \rightarrow 0 \quad$ Read the bits from
$(8-0) / 2=4 \rightarrow 0 \quad$ bottom to top (and
$(2-0) / 2=1 \quad \rightarrow 1$ needed).
$(1-1) / 2=0 \quad$ (done)

[^0]: ECE 120: Introduction to Computing

