University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering
ECE 120: Introduction to Computing

Representations and Bits

Represent One Type of Information with Another

We often represent one type of information with other patterns, physical quantities, and so forth.
examples

- English letters represented by drawn patterns
- colors represented by variations in radio signal amplitude
The mapping from one form to another is called a representation.

Knowing the Representation May Help You

The code above is called a tic-tac-toe code: each letter (information) is represented by a drawing (pattern).

What Do We Need to Make a Representation Useful?

What properties are necessary for a representation to be useful?

Hints:

- Think about the tic-tac-toe code.
- Think about algorithm properties.

First Answer: Representations Must be Well-Defined

All users must know the translation in advance.

Our goal is communication, not obfuscation.

Some Mappings May Not be Usable by Computers

0	1	2	3	4	5	6	7	8	9
A	B	C	D	E	F	G	H	I	J
K	L	M	N	O	P	Q	R	S	T
U	V	W	X	Y	Z				

If we use 10 digits to represent 26 letters as shown above, what does " 143 " mean?

BED? BOX? VYN?
Computers are dumb-they cannot guess.

Second Answer: Representations Must be Unambiguous
Each pattern must represent at most one thing.

ECE 120: Introduction to Computing
© 2016 Steven S. Lumetta. All rights reserved
slide

But Some Patterns May Represent Nothing

In the representation below, the digits $0,2,7,8$, and 9 represent no color.

ECE 120: Introduction to Computing
© 2016-2017 Steven S. Lumetta. All rights reserved.

Computers are Based on Electrons

In digital systems, electrons are all \mathbf{V}_{dd} we have to represent information!
What can you ask about electrons?
How many electrons are in a certain place? (related closely to voltage)
So...

- Choose a ground: 0V by definition.
${ }^{\circ}$ Pick a higher voltage (called \mathbf{V}_{dd}).

Computer Representations are Based on BInary digiTs

 digit, which we call a bit.

Represented by What? The Answer is Always "Bits"

ECE 120: Introduction to Computing

A Question for You: How Many Bits do We Need?

How many bits do we need to represent a whole number in the range...

```
from 0 to 31?
    \circ}32\mathrm{ different integers
    * so we need 5 bits (25 = 32 bit patterns)
\circ from 0 to 100?
    - }101\mathrm{ different integers
    \circ}\mathrm{ - o we need 7 bits ( }\mp@subsup{2}{}{7}=128\mathrm{ bit patterns)
```


How Many Bits Do We Need to Represent N Things?

Let's test your understanding (and generalize)!
How many bits do we need to represent...

```
- a whole number from 1000 to 1100?
    101 different integers, so 7 bits ( }27=128
\circ}\mathrm{ one of }199\mathrm{ flavors of ice cream?
    199 different flavors, so 8 bits ( }\mp@subsup{2}{}{8}=256
\circ a living person?
    7-8 billion people, so 33 bits ( }\mp@subsup{2}{}{33}>8\mathrm{ billion)
N things?
    \lceil\mp@subsup{\operatorname{log}}{2}{}\mathbf{N\rceil (ceiling / integer at least as large as}
    log base 2 of N)
```

ECE 120: Introduction to Computing

We Need One Bit Pattern for Each Possible Thing

Trick question: How many bits do we need to represent two books?

- The Collected Works of Shakespeare
- Our textbook by Patt \& Patel
- 2 different books
- so we need only 1 bit! ($2^{1}=2$ bit patterns $)$

What matters is the number of things, not what those things are.

