
1.
a.

b.
c.

2.
a.
b.

i.

Lab 12

Programming in LC-3 machine language
In this lab, you will write a program in binary LC-3 machine language. Your program will compute the sum of positive numbers among a set of 10 numbers
represented in 2's complement format and will store the result in register R5. Your program will start at memory address x3100. The ten 16-bit binary
numbers to analyze will be stored in memory starting from address x3132.

You are provided with 2 template files in your SVN repository inside folder.lab12

The file is where you will write your binary program.lab12.bin
The file will contain the 10 16-bit binary numbers that your program will analyze.numbers.bin

Example

Given the following 10 numbers:

Address Binary Number (in Hex) (in Decimal)

x3132 0000 0000 0000 0001 x0001 1

x3133 1111 1111 1000 0000 xFF80 -128

x3134 0000 0000 0000 0100 x0004 4

x3135 1111 1111 1111 1000 xFFF8 -8

x3136 0000 0000 0010 0000 x0020 32

x3137 0000 0010 0000 0000 x0200 512

x3138 1111 1111 1100 0000 xFFC0 -64

x3139 1111 1111 1111 1110 xFFFE -2

x313A 1111 1111 0000 0000 xFF00 -256

x313B 0000 0000 0001 0000 x0010 16

Your program should add up all positive numbers (1, 4, 32, 512, and 16) and the following value should be stored in Register 5 after the completion of your
program:

Value stored in R5 (in Hex) (in Decimal)

0000 0010 0001 0111 x0235 565

Suggested Algorithm/Decomposition

If you're not sure how to get started with this lab assignment, we've provided a simple systematic decomposition that you can build on to develop your
algorithm and your program. You are not required to use this decomposition; we provide it only as a reference to get you started. Note that we use generic
action terms here like "Load" and "Compare" – these are an important part of the algorithm, but it is up to you to figure out how to accomplish these actions.

Basic Algorithm

Initialize Registers
Initialize a register, say R3, to be used as a pointer to point to the location of the numbers in memory that are being analyzed, starting
from address x3132
Initialize a register, say R4, to the value 10. This will be used as a counter
Initialize Register 5 to 0, this will be your final sum

Set up your loop
Load in from memory (using R3 to tell you where) binary number
Check if the loaded number is positive

Lab 12 assignment is due on Wednesday, May 6 , by 9pm in your svn repository. For help, please check the first. th Labs FAQ
Specifically, please read the and . Terminal Troubleshooting SVN Troubleshooting

Please ask all questions about this assignment during the office hours or post questions in the WeChat group.

This lab is to be done on in . If you run your own Linux distribution, please see a Linux workstation or VM Installing LC-3 tools on your machine
section for instructions how to install the tools needed in this lab.

https://wiki.illinois.edu/wiki/display/zjuiece120/Labs+FAQ
https://wiki.illinois.edu/wiki/display/zjuiece120/Terminal+Troubleshooting
https://wiki.illinois.edu/wiki/display/zjuiece120/SVN+Troubleshooting
https://wiki.illinois.edu/wiki/display/zjuiece120/Installing+LC-3+tools+on+your+machine
刘培源

2.

b.

i.
ii.

c.
d.

3.

If the number is positive, add it to the value stored in R5
If the new number is negative, ignore it

Increment pointer (R3) and decrement counter (R4)
Repeat steps 2.a - 2.c until all 10 numbers have been examined

Halt the program

Specific Requirements

Your code must be written in the LC-3 machine language, and be named .binary lab12.bin
Your code must begin at memory location x3100, whereas the 10 positive numbers begin at memory location x3132.
Your program must use a loop.
You program may only consist of at most 50 16-bit binary words (not including the 10 positive numbers)
Your code must be commented properly (see Style and Comments section below)

Style and Comments

For readability reasons, you must not have more than 120 characters on a single line. If you are writing a long comment that would otherwise exceed 120
characters, you should continue your comment on the next line.

Comment/Style Requirements:

At the very top of your code, you must include an introductory comment section with your name, date, and a brief explanation of the purpose and
general function of your program.
Below that paragraph, include a register table explaining the role of each register used by your program.
For each binary word, you may use spaces to separate instruction fields (e.g. 0010 001 000000100 for the LD instruction instead of
0010001000000100).
Your code must be well-commented on every line (every line, as it is in binary. Programs not coded in binary do not need comments for every
single line).

Comments must begin with a semicolon
You may use RTL or Assembly as your comment (i.e. "R7 <-- R7 + 1"), but you MUST also include some more description about what
this particular line of code is doing

For example:
0001 111 111 1 00001 ; R7<--R7+1, incrementing the counter register (R7)

In case you still don't understand the coding style of machine code, below is a sample code you can refer to. Please follow this format! (Attention: this code
has nothing to do with your lab assignment, it's just a sample.)

; read a decimal number from the keyboard,
; convert it from ASCII to 2's complement, and
; store it in a predefined memory location. If
; any non-numeric character is pressed, or the
; number overflows, store a 0 and print an error
; message.

; R0 holds the value of the last key pressed
; R1 holds the current value of the number being input
; R2 holds the additive inverse of ASCII '0' (0xFFD0)
; R3 is used as a temporary register

00110000 00000000 ; starting address is x3000

0010 010 000010100 ; R2 <- M[PC+x14] put the value \-x30 in R2
0101 001 001 1 00000 ; R1 <- 0 clear the current value
1111 0000 00100000 ; R0 <- keyboard read a character
1111 0000 00100001 ; display <- R0 echo it back to monitor
0001 011 000 1 10110 ; R3 <- R0-10 compare with ENTER
0000 010 000010001 ; if z, PC <- PC+x11 ENTER pressed, so done
0001 000 000 0 00 010 ; R0 <- R0+R2 subtract x30 from R0
0000 100 000010001 ; if n, PC <- PC+x11 smaller than '0' means error
0001 011 000 1 10110 ; R3 <- R0-10 check if > '9'
0000 011 000001111 ; if zp, PC <-PC+xF greater than '9' means error
0001 011 001 0 00 001 ; R3 <- R1+R1 sequence of adds multiplies R1 by 10
0000 100 000010101 ; if n, PC <- PC+x15 overflow, but not really necessary here
...

Tools / Running Your Code

In your subversion repository, you will be provided with the following 2 template files inside of the lab12 directory:

lab12.bin

刘培源

刘培源

刘培源

刘培源

1.
2.
3.

1.

2.
3.
4.
5.
6.
7.
8.

1.
2.

1.

2.
3.
4.

numbers.bin

In file , you will write all of the code for this lab. In file , you will place your ten numbers (in 16-bit 2's complement binary notation) lab12.bin numbers.bin
that your program will sort through. We have provided a default set of numbers to try, but When we grade this DO BE SURE TO TRY OTHER NUMBERS!
lab, we will be trying to run your code with several different assortments of numbers. A good strategy is to test (at the very least) the number sets provided
in the above example.

To run and test your code, execute the following steps

First, you will have to convert your code:

Open up a terminal, and navigate to the folder where your code is located. Be sure your files are saved (both lab12.bin and numbers.bin)
Type in: lc3convert lab12.bin
Type in: lc3convert numbers.bin

Now you have 2 options (once you have run the lc3convert command on both of your files): You may run your code in the command line simulator, or the
graphical simulator. We suggest using the graphical simulator to begin with, as this may be a more intuitive way to debug your code. However, the graders
will be running your code in the command line simulator, so (although if it works in one, be sure your program works in the command line simulator
most likely it will work in the other).

To run your code in the Graphical simulator:

While still in the folder where your code is located, type in . (NOTE: do not enter any .obj files after the command. we will load them lc3sim-tk
momentarily inside the simulator)
On the bottom of the editor, it has a text bar that is labeled "File to Load". Click on the button located right next to this text barBrowse
Select the file , and click . (NOTE: Loading the files in the right order matters, so be sure to load numbers.obj first)numbers.obj Open
A pop-up box may appear that reads: "WARNING: No symbols are available". This is fine, just click if this popup box opensOK
Next, click on the button one more time.Browse
Select the file , and click .lab12.obj Open
Again click if a warning box appears.OK
Your program is now loaded. You can now click the buttons to step through your code line by line and see how it changes the registers, or Step
you can click to execute your whole program at once (it will stop when it reaches the HALT instruction). Once completed, your value for Continue
R5 should contain the sum (in hex) of the positive numbers out of the 10 numbers you entered in the file numbers.bin.

To run your code in the Graphical simulator a second time without closing and reopening the simulator:

After your program runs, click the "Reset LC-3" button in the bottom left.
Follow steps 2 through 8 above.

To run your code in the command line simulator (how the graders will do it):

While still in the folder where your code is located, type in . (NOTE: do not enter any .obj files after the command. we will load them lc3sim
momentarily inside the simulator)
Once in the simulator, type: (this loads the numbers into the simulator)file numbers.obj
Next, type: (this loads your program into the simulator)file lab12.obj
Your program is now loaded! You can now type to step through your code line by line and see how it changes the registers (you will have to step
type step repeatedly), or you can type to execute your whole program at once (it will stop when it reaches the HALT instruction). Once continue
completed, your value for R5 should contain the sum (in hex) of the positive numbers out of the 10 numbers you entered in the file numbers.bin.

While there are many different ways to test and run your code, Your code must work in the LC-3 command line simulator in order to receive credit.
Please make sure your code works before you make your final commit to svn repository.

Lab submission

To submit you lab work, just commit your final program lab12.bin to your SVN repository.

Grading

The functionality grade script will execute your program with several test inputs (different combinations of numbers in the numbers.bin file) and will verify
the correctness of the answers computed by your program. If the correct answer is stored in register 5 after it has run each time, that will be considered a
successful implementation. If your program does not store the correct answer in R5, you will not get any credit for your implementation.

Grading Breakdown

Functionality (70%)
5%: Program starts at x3100
5%: Result is stored in R5
5%: Program halts
5%: Program reads 10 consecutive numbers starting from address x3132
5%: Registers are properly initialized/cleared (only registers that are used by your code)
15%: Passes test case with all positive numbers
15%: Passes test case with all negative numbers
15%: Passes test case with mixed positive/negative numbers

Code organization (20%)
5%: Uses one loop

5%: Uses one test to compare numbers
5%: No unnecessary data movement
5%: Code is short

Format (10%)
2%: Lines are kept to 120 characters.
3%: Machine code and comments are formatted properly.
2%: Brief introductory paragraph explaining your overall approach to the solution
3%: Code is well-commented

	Lab 12

