# **Homework 12**



Homework 12 is due on Wednesday, May 6, at the start of the lecture. Remember to include your *Discussions section* (e.g. ED1) and follow the complete Homework submission guidelines.

Please ask all questions about this assignment during the office hours, or post them on piazza.

# Programming in binary machine language



For your programs: write the instruction address, the binary LC-3 instruction, and the corresponding RTL or assembly in the following format:

```
0001 001 010 1 00100 ; R1 R2 + 4
0001 001 010 1 00100 ; ADD R1, R2, #4
```

Note how bits are arranged in groups that correspond to instruction-specific operands.

If you are not sure about the RTL format of a certain instruction, you can refer to Appendix A of your Patt & Patel text or read sections 5.5 and 6.1. Try to make your program as simple and intuitive as you can.

### 1. Register manipulation

- 1. Copy a value from register R2 into register R3 using
  - a. Only one ADD instruction
  - b. Only one AND instruction
- 2. Clear value of register R5 using only one instruction
- 3. Using only one instruction, increment value in register R6 by 1.
- 4. Using only one instruction, decrement value in register R5 by 2.

#### 2. Memory addressing

- 1. Using only one instruction, read value from memory located 20 memory locations away from the address stored in PC.
- Using only one instruction, generate and store in R5 address of a memory location 20 memory locations away from the current PC. Then demonstrate how the address stored in R5 can be used to access memory at that address.

# 3. Patt & Patel 6.4

Systematically decompose the problem 6.4 from Patt & Patel textbook to the level of LC-3 instructions, then write LC-3 instructions to implement your solution. You may change the contents of R0, R1, and R2. Turn in your flow chart and LC-3 instructions in binary. For credit, each instruction must be annotated with a comment in RTL or assembly.

## 4. 2<sup>n</sup>

Assuming that R4 contains a positive value less than 15, put the value 2<sup>R4</sup> into R3. You may change the contents of R3 and R4. Systematically decompose the problem to the level of LC-3 instructions, then write LC-3 instructions to implement your solution. Turn in your flow chart and LC-3 instructions in binary. For credit, each instruction must be annotated with a comment in RTL or assembly.

#### 5. Sum of sequence

Assuming that R5 contains a strictly positive number, compute the sum of integers from 1 to R5 and store the result in R2. You may change the contents of R2 and R5. Systematically decompose the problem to the level of LC-3 instructions, then write LC-3 instructions to implement your solution. Turn in your flow chart and LC-3 instructions in binary. For credit, each instruction must be annotated with a comment in RTL or assembly.

#### 6. Patt & Patel 6.16

Solve problem 6.16 from Patt & Patel. Stop your execution trace when the PC reaches x3003, and do not fill in row x3003 of the table in your solution.

### 7. Printing a line

Two students are trying to print a line of periods bounded by asterisks to the console. The line is supposed to have N-2 periods, where N-2 periods periods bounded by asterisks to the console. Each student came up with a systematic decomposition that appears very different from the other student's solution. Look at the two approaches, as represented by the flow charts below.

- 1. Explain which approach is the better of the two and why you believe it to be better.
- Imagine that one must replace each box labeled "print "x" with a complex algorithm requiring almost 1,000 LC-3 instructions to
  implement. Repeat your comparison between the two approaches after the replacement described, again explaining why you believe your choice
  to be the better one.

