ECE 120 Second Midterm Exam Spring 2016

Tuesday, March 15, 2016

Name:	UTIONS	NetID:
Discussion Section): 	
9:00 AM	[] AB1	
10:00 AM	[] AB2	
11:00 AM	[] AB3	
12:00 PM	[] AB4	
1:00 PM	[] AB5	[] ABA
2:00 PM	[] AB6	
3:00 PM	[] AB7	[] ABB
4:00 PM	[] AB8	[] ABC
5:00 PM	[] AB9	[] ABD

- Be sure that your exam booklet has 8 pages.
- Write your name, netid and check discussion section on the title page.
- Do not tear the exam booklet apart.
- Use backs of pages for scratch work if needed.
- This is a closed book exam. You may not use a calculator.
- You are allowed one handwritten 8.5 x 11" sheet of notes (both sides).
- Absolutely no interaction between students is allowed.
- Clearly indicate any assumptions that you make.
- The questions are not weighted equally. Budget your time accordingly.

Show your work.

Total	100 points	
Problem 6	12 points	
Problem 5	17 points	
Problem 4	14 points	
Problem 3	18 points	
Problem 2	19 points	
Problem 1	20 points	

Problem 1 (20 points): CMOS and Boolean properties

1. (5 points) Circle the correct choice for each statement. The inputs are inverted.

a. The output *Z* equals:

b. This example best illustrates the Boolean property:

2. (15 points) Let G(x,y,z) and H(x,y,z) be the 3-variable functions whose K-maps are given below.

- a. Express H(x,y,z) in canonical POS form
 - i. Using the variables x, y, z:

$$H(x,y,z) = \frac{(x+y+z)(x'+y'+z)}{}$$

ii. Using the maxterm M_i notation:

$$H(x,y,z) = M_0 M_0$$

b. Using your expression for *H* from part a.i), give the exact **dual of H**:

dual of
$$H(x,y,z) = \frac{YYZ + x'Y'Z}{}$$

c. Complete the K-map (below) for function F, so that $F \oplus G = H$. You must use don't cares wherever possible.

Problem 2 (19 points): Sequential logic

1. (10 points) Consider the sequential feedback circuit shown below.

a. Complete the next-state table for this circuit

М	N	Q⁺
0	0	Forbidden
0	1	1
1	0	O
1	1	Q

b. Express the next state Q^+ as a function of M, N, and Q in **SOP form**.

$$Q^{\dagger} = \underline{M'N + MNQ} = \underline{M' + MNQ} = \underline{M'NQ'} + \underline{M'NQ + MNQ}$$
$$= \underline{M'N + NQ} = \underline{M' + NQ}$$

2. (9 points) Consider a 3-bit shift register that has the following diagram:

a. Determine the functionality of the register by completing the following table

F ₁	Fo	Operation
0	0	Unused
0	1	Logical shift right
1	0	Circular shift right
1	1	Arithmetic shipt right

b. If the shift register initially stores $Q_2Q_1Q_0$ =100 and Input=0, what is stored in the register after one clock pulse and

$$F_1 F_0 = 01?$$

$$F_1$$
 F_0 = 10? O (Assume again that 100 is stored before the operation.)

$$F_1$$
 F_0 = 11? (Assume again that 100 is stored before the operation.)

Problem 3 (18 points)

7

Consider the 4-variable function f(w,x,y,z), with the following K-map (drawn twice).

1. Give a minimal SOP expression for f(w,x,y,z) and show the corresponding loops on the left map.

map.

min SOP:
$$\overline{X}\overline{z} + \overline{X}\overline{y} + \overline{W}X\overline{z} + XY\overline{z}$$
 $\overline{w}X\overline{z} + \overline{w}Xy$

2. Give a minimal POS expression for f(w,x,y,z) and show the corresponding loops on the right map.

min POS:
$$(\overline{x} + \overline{z})(\overline{w} + \overline{x} + y)(x + \overline{y} + \overline{z})$$

3. Implement f using only a 4:1 multiplexer (with select inputs $S_1S_0 = wx$) and one NAND gate. Complemented inputs are not available.

Problem 4 (14 points)

In this problem you will complete the design of the circuit shown below, which compares two 4-bit unsigned binary numbers $A=a_3a_2a_1a_0$ and $B=b_3b_2b_1b_0$ and outputs

1. (8 points) Design cell C so that the comparator portion of the above circuit operates correctly and outputs

$$c_4 = \begin{cases} 0 & \text{if } A < B \\ 1 & \text{if } A \ge B \end{cases}$$

a. Specify the input c₀.

 $\textbf{b.} \ \ \, \text{Express } c_{i+1} \text{ in terms of } c_i, \ a_i, \ b_i.$

2. (6 points) Design the network N by giving a Boolean expression for f.

$$f = C_y(\overline{xy}) + C_y(\overline{x}+y)$$

Problem 5 (17 points)

Shown below is an **8-bit arithmetic unit (AU)** which operates on two 8-bit **2's complement** numbers A and B. Each network N computes a* and b*, where:

$$a^* = k_1' k_0' + k_1 a$$

 $b^* = k_1 k_0' b' + k_0 b + k_1' k_0' a$

1. (4 points) Give a 2-level NAND gate implementation of a*. Assume complemented inputs are available.

- 2. (13 points) Complete the table below.
 - a. Give the values for a*, b*, c₀
 - b. Specify the operation performed. Express your answer as an **arithmetic function** (PLUS/MINUS) of A and B (e.g., "a plus the complement of b" is not an appropriate response).

k ₁	k ₀	a*	b*	C ₀	Operation performed as a function of A and B (e.g. A PLUS/MINUS B)			
0	0	1	a	O	A MINUS 1			
0	1	0	Ь	1	B PLUS 1			
1	0	α	6	0	A MINUS B MINUS 1			
1	1	a	b	1	A PLUS B PLUS 1			

Problem 6 (12 points): Finite State Machines

The circuit below is a 2-bit register that shifts right with serial input of 0 when K=0 and parallel loads with inputs of 1 when K=1.

1. (6 points) Complete the state transition table for the circuit.

S_1	S_0	K	S_1^+	S_0^+	Z
0	0	0	O	0	0
0	0	1	l	l	O
0	1	0	Ö	0	
0	1	1		1	
1	0	0	0		O
1	0	1	ł		O
1	1	0	0	1	
1	1	1	l		

2. (6 points) Complete the state transition diagram for the circuit.

Boolean algebra properties

Commutativity
$$x \cdot y = y \cdot x$$
 $x + y = y + x$

Associativity $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ $(x + y) + z = x + (y + z)$

Distributivity $x \cdot (y + z) = x \cdot y + x \cdot z$ $x + y \cdot z = (x + y) \cdot (x + z)$

Idempotence $x \cdot x = x$ $x + x = x$

Identity $x \cdot 1 = x$ $x + 0 = x$

Null $x \cdot 0 = 0$ $x + 1 = 1$

Complementarity $x \cdot x' = 0$ $x + x' = 1$

Involution $(x')' = x$

DeMorgan's $(x \cdot y)' = x' + y'$ $(x + y)' = x' \cdot y'$

Absorption $x \cdot (x + y) = x$ $x + x \cdot y = x$

No-Name $x \cdot (x' + y) = x \cdot y$ $x + x' \cdot y = x + y$

Consensus $(x + y) \cdot (y + z) \cdot (x' + z) = x \cdot y + y \cdot z + x' \cdot z = x \cdot y + x' \cdot z$

Feel free to tear this page off and use it as scratch paper.