ECE 120 Second Midterm Exam Spring 2016

Tuesday, March 15, 2016

Name:		NetID:	
Discussion Section:			
9:00 AM	[] AB1		
10:00 AM	[] AB2		
11:00 AM	[] AB3		
12:00 PM	[] AB4		
1:00 PM	[] AB5	[] ABA	
2:00 PM	[] AB6		
3:00 PM	[] AB7	[] ABB	
4:00 PM	[] AB8	[] ABC	
5:00 PM	[] AB9	[] ABD	

• Be sure that your exam booklet has 8 pages.

- Write your name, netid and check discussion section on the title page.
- Do not tear the exam booklet apart.
- Use backs of pages for scratch work if needed.
- This is a closed book exam. You may <u>not</u> use a calculator.
- You are allowed one handwritten 8.5 x 11" sheet of notes (both sides).
- Absolutely no interaction between students is allowed.
- Clearly indicate any assumptions that you make.
- The questions are not weighted equally. Budget your time accordingly.
- Show your work.

Problem 1	20 points	
Problem 2	19 points	
Problem 3	18 points	
Problem 4	14 points	
Problem 5	17 points	
Problem 6	12 points	

Total 100 points

Problem 1 (20 points): CMOS and Boolean properties

1. (5 points) Circle the correct choice for each statement. The inputs are inverted.

2. (15 points) Let G(x,y,z) and H(x,y,z) be the 3-variable functions whose K-maps are given below.

H(x,y,z)

G(x,y,z)

	уz					
_	00	01	11	10		
0	0	1	1	0		
1	0	1	0	0		
	Ĩ	0 0	00 01	00 01 11 0 0 1 1		

		yz				
		00	01	11	10	
x	0	0	1	1	1	
	1	1	1	1	0	

- **a.** Express H(x,y,z) in canonical POS form
 - i. Using the **variables** *x*, *y*, *z*:

H(x,y,z) =

ii. Using the **maxterm M**_i **notation**:

H(x,y,z) =

b. Using your expression for *H* from part a.i), give the exact **dual of H**:

dual of H(x,y,z) =

c. Complete the K-map (below) for function F, so that F + G = H. You must use don't cares wherever possible.

Problem 2 (19 points): Sequential logic

1. (10 points) Consider the sequential feedback circuit shown below.

a. Complete the next-state table for this circuit

М	Ν	Q⁺
0	0	Forbidden
0	1	
1	0	
1	1	

- **b.** Express the next state Q^+ as a function of *M*, *N*, and *Q* in **SOP form**.
- Q⁺ = _____
- 2. (9 points) Consider a 3-bit shift register that has the following diagram:

a. Determine the functionality of the register by completing the following table

F ₁	F٥	Operation
0	0	Unused
0	1	
1	0	
1	1	

b. If the shift register initially stores $Q_2Q_1Q_0=100$ and *Input*=0, what is stored in the register after one clock pulse and

 $F_1 F_0 = 01?$

- $F_1 F_0 = 10?$ (Assume again that 100 is stored before the operation.)
- $F_1 F_0 = 11?$ (Assume again that 100 is stored before the operation.)

Problem 3 (18 points)

Consider the 4-variable function f(w,x,y,z), with the following K-map (drawn twice).

		mir	nima	I SC	P		mir	nima	I PC	S
		00	y 01	′z _11	10		00	y 01	z 11	10
	00	1	х	0	1	00	1	х	0	1
wx	01	0	1	1	0	01 wx	0	1	1	0
~~~	11	0	0	1	x	11	0	0	1	х
	10	1	1	0	1	10	1	1	0	1
		1	f(w,x	(,y,z)	)		1	f(w,x	,y,z)	

**1.** Give a **minimal SOP** expression for *f*(*w*,*x*,*y*,*z*) and show the corresponding loops on the **left map**.

min SOP: _____

2. Give a minimal POS expression for *f*(*w*,*x*,*y*,*z*) and show the corresponding loops on the right map.

min POS:

**3.** Implement *f* using **only a 4:1 multiplexer** (with select inputs  $S_1S_0 = wx$ ) and **one NAND** gate. Complemented inputs are **not** available.



### Problem 4 (14 points)

In this problem you will complete the design of the circuit shown below, which compares two 4-bit unsigned binary numbers  $A=a_3a_2a_1a_0$  and  $B=b_3b_2b_1b_0$  and outputs



**1.** (8 points) Design cell C so that the comparator portion of the above circuit operates correctly and outputs

$$c_4 = \begin{cases} 0 & \text{if } A < B \\ 1 & \text{if } A \ge B \end{cases}$$

- **a.** Specify the input  $c_0$ .
- c₀ = _____
- **b.** Express  $c_{i+1}$  in terms of  $c_i$ ,  $a_i$ ,  $b_i$ .
- C_{i+1} = _____

- 2. (6 points) Design the network N by giving a Boolean expression for f.
  - f = _____

#### Problem 5 (17 points)

Shown below is an **8-bit arithmetic unit (AU)** which operates on two 8-bit **2's complement** numbers A and B. Each network N computes a* and b*, where:

 $a^* = k_1' k_0' + k_1 a$  $b^* = k_1 k_0' b' + k_0 b + k_1' k_0' a$ 



**1.** (4 points) Give a **2-level NAND gate** implementation of a*. Assume complemented inputs are available.

- **2.** (13 points) Complete the table below.
  - a. Give the values for  $a^*$ ,  $b^*$ ,  $c_0$
  - b. Specify the operation performed. Express your answer as an **arithmetic function** (PLUS/MINUS) of **A and B** (e.g., "a plus the complement of b" is not an appropriate response).

k ₁	k ₀	a*	b*	C ₀	Operation performed as a function of A and B (e.g. A PLUS/MINUS B)
0	0				
0	1				
1	0				
1	1				

# Problem 6 (12 points): Finite State Machines

The circuit below is a 2-bit register that shifts right with serial input of 0 when K=0 and parallel loads with inputs of 1 when K=1.



**1.** (6 points) Complete the state transition table for the circuit.

<i>S</i> ₁	<i>S</i> ₀	Κ	$S_{1}^{+}$	$S_{0}^{+}$	Ζ
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

2. (6 points) Complete the state transition diagram for the circuit.



# Boolean algebra properties

Commutativity	$\mathbf{x} \cdot \mathbf{y} = \mathbf{y} \cdot \mathbf{x}$	x + y = y + x
Associativity	$(x \cdot y) \cdot z = x \cdot (y \cdot z)$	(x + y) + z = x + (y + z)
Distributivity	$x \cdot (y + z) = x \cdot y + x \cdot z$	$x + y \cdot z = (x + y) \cdot (x + z)$
Idempotence	$\mathbf{x} \cdot \mathbf{x} = \mathbf{x}$	x + x = x
Identity	$x \cdot 1 = x$	x + 0 = x
Null	$\mathbf{x} \cdot 0 = 0$	x + 1 = 1
Complementarity	$\mathbf{x} \cdot \mathbf{x'} = 0$	x + x' = 1
Involution	(x	')' = x
DeMorgan's	$(\mathbf{x} \cdot \mathbf{y})' = \mathbf{x}' + \mathbf{y}'$	$(x + y)' = x' \cdot y'$
Absorption	$x \cdot (x + y) = x$	$x + x \cdot y = x$
No-Name	$\mathbf{x} \cdot (\mathbf{x'} + \mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$	$x + x' \cdot y = x + y$
Consensus	$(x+y) \cdot (y+z) \cdot (x'+z) =$	$x \cdot y + y \cdot z + x' \cdot z =$
	(x+y) ·(x'+z)	$x \cdot y + x' \cdot z$

Feel free to tear this page off and use it as scratch paper.