ECE 120 Second Midterm Exam
Spring 2016
Tuesday, March 15, 2016

- Be sure that your exam booklet has 8 pages.
- Write your name, netid and check discussion section on the title page.
- Do not tear the exam booklet apart.
- Use backs of pages for scratch work if needed.
- This is a closed book exam. You may not use a calculator.
- You are allowed one handwritten 8.5×11 " sheet of notes (both sides).
- Absolutely no interaction between students is allowed.
- Clearly indicate any assumptions that you make.
- The questions are not weighted equally. Budget your time accordingly.
- Show your work.

Problem 120 points
Problem 219 points
\qquad

Problem 318 points
\qquad
Problem 318 points \qquad
Problem 414 points \qquad
Problem 517 points \qquad
Problem 612 points \qquad

Total $\quad 100$ points \qquad

Problem 1 (20 points): CMOS and Boolean properties

1. (5 points) Circle the correct choice for each statement. The inputs are inverted.

a. The output Z equals:
P AND Q PORQ PNOR Q P XOR Q P XNOR Q
b. This example best illustrates the Boolean property:

DeMorgan's Absorption No-Name Consensus
2. (15 points) Let $G(x, y, z)$ and $H(x, y, z)$ be the 3 -variable functions whose K -maps are given below.
$G(x, y, z)$

	yz			
	00	01	11	10
0	0	1	1	0
1	0	1	0	0

$H(x, y, z)$

	$\begin{array}{lllll}00 & 01 & 11 & 10\end{array}$			
0	0	1	1	1
1	1	1	1	0

a. Express $H(x, y, z)$ in canonical POS form
i. Using the variables x, y, z :
$H(x, y, z)=$
ii. Using the maxterm $\mathbf{M}_{\mathbf{i}}$ notation:
$H(x, y, z)=$
b. Using your expression for H from part a.i), give the exact dual of \mathbf{H} :
dual of $H(x, y, z)=$ \qquad
c. Complete the K-map (below) for function F, so that $F+\boldsymbol{G}=\boldsymbol{H}$. You must use don't cares wherever possible.

Problem 2 (19 points): Sequential logic

1. (10 points) Consider the sequential feedback circuit shown below.

a. Complete the next-state table for this circuit

\mathbf{M}	\mathbf{N}	\mathbf{Q}^{+}
0	0	Forbidden
0	1	
1	0	
1	1	

b. Express the next state Q^{+}as a function of M, N, and Q in SOP form.

$$
\mathrm{Q}^{+}=
$$

\qquad
2. (9 points) Consider a 3-bit shift register that has the following diagram:

a. Determine the functionality of the register by completing the following table

F_{1}	F_{0}	Operation
0	0	Unused
0	1	
1	0	
1	1	

b. If the shift register initially stores $Q_{2} Q_{1} Q_{0}=100$ and Input=0, what is stored in the register after one clock pulse and
$F_{1} F_{0}=01 ?$ \qquad
$F_{1} F_{0}=10 ?$ \qquad (Assume again that 100 is stored before the operation.)
$F_{1} F_{0}=11 ?$ \qquad (Assume again that 100 is stored before the operation.)

Problem 3 (18 points)

Consider the 4 -variable function $f(w, x, y, z)$, with the following K-map (drawn twice).
minimal SOP
yz

1. Give a minimal SOP expression for $f(w, x, y, z)$ and show the corresponding loops on the left map.
min SOP: \qquad
2. Give a minimal POS expression for $f(w, x, y, z)$ and show the corresponding loops on the right map.
min POS: \qquad
3. Implement f using only a 4:1 multiplexer (with select inputs $\mathrm{S}_{1} \mathrm{~S}_{0}=w x$) and one NAND gate. Complemented inputs are not available.

Problem 4 (14 points)

In this problem you will complete the design of the circuit shown below, which compares two 4 -bit unsigned binary numbers $A=a_{3} a_{2} a_{1} a_{0}$ and $B=b_{3} b_{2} b_{1} b_{0}$ and outputs

$$
f=\left\{\begin{array}{cc}
x \text { NAND } y & \text { if } A<B \\
x^{\prime} O R y & \text { if } A \geq B
\end{array}\right.
$$

1. (8 points) Design cell C so that the comparator portion of the above circuit operates correctly and outputs

$$
c_{4}= \begin{cases}0 & \text { if } A<B \\ 1 & \text { if } A \geq B\end{cases}
$$

a. Specify the input c_{0}.
$\mathrm{C}_{0}=$ \qquad
b. Express c_{i+1} in terms of c_{i}, a_{i}, b_{i}.
$c_{i+1}=$ \qquad
2. (6 points) Design the network N by giving a Boolean expression for f .
$\mathrm{f}=$ \qquad

Problem 5 (17 points)

Shown below is an 8-bit arithmetic unit (AU) which operates on two 8-bit 2's complement numbers A and B . Each network N computes a^{*} and b^{*}, where:

$$
\begin{aligned}
& a^{*}=k_{1}{ }^{\prime} k_{0}{ }^{\prime}+k_{1} a \\
& b^{*}=k_{1} k_{0}{ }^{\prime} b^{\prime}+k_{0} b+k_{1}{ }^{\prime} k_{0}{ }^{\prime} a
\end{aligned}
$$

1. (4 points) Give a 2-level NAND gate implementation of a^{*}. Assume complemented inputs are available.
2. (13 points) Complete the table below.
a. Give the values for a^{*}, b^{*}, c_{0}
b. Specify the operation performed. Express your answer as an arithmetic function (PLUS/MINUS) of A and B (e.g., "a plus the complement of b" is not an appropriate response).

\mathbf{k}_{1}	\mathbf{k}_{0}	\mathbf{a}^{*}	\mathbf{b}^{*}	\mathbf{c}_{0}	Operation performed as a function of A and B $($ e.g. A PLUS/MINUS B)
0	0				
0	1				
1	0				
1	1				

Problem 6 (12 points): Finite State Machines

The circuit below is a 2-bit register that shifts right with serial input of 0 when $K=0$ and parallel loads with inputs of 1 when $K=1$.

1. (6 points) Complete the state transition table for the circuit.

S_{1}	S_{0}	K	S_{1}^{+}	S_{0}^{+}	Z
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

2. (6 points) Complete the state transition diagram for the circuit.

Boolean algebra properties

Feel free to tear this page off and use it as scratch paper.

