ECE199 Exam 1, Fall 2012

Tuesday, 18 September
Name and UIUC netid:

- Be sure that your exam booklet has 9 pages.
- Write your name at the top of each page.
- The exam is meant to be taken apart.
- This is a closed book exam.
- You are allowed one $8.5 \times 11^{\prime \prime}$ sheet of notes.
- We have provided a scratch sheet and an ASCII table at the back.
- Absolutely no interaction between students is allowed.
- Show all of your work.
- Don't panic, and good luck!

Now...if you trust in yourself...and believe in your dreams...and follow your star...you'll still get beaten by people who spent their time working hard and learning things and weren't so lazy. - from The Wee Free Men, by Terry Pratchett

Problem 120 points
Problem 215 points
Problem 320 points \qquad
Problem 425 points
Problem 520 points

Total
100 points

Problem 1 (20 points): Representations
Part A (3 points): Express the 32-bit binary sequence "0110 1100011101010110001101101011 " in hexadecimal.

Part B (4 points): Interpret the four successive 8-bit bytes making up the binary sequence in Part A as a fourcharacter ASCII sequence. As your answer, give the equivalent ASCII sequence.

Part C (6 points): For the two eight-bit binary numbers, $A=01101101$ and $B=10110111$, give the result of the following bitwise logical operations.
A AND $B=$ \qquad
A OR $B=$ \qquad
A XOR $B=$ \qquad

Part B (7 points): Express the decimal number 14.5 in IEEE 32-bit floating point representation in bits.

Problem 2 (15 points): 2's-Complement Arithmetic

Please compute the following arithmetic operations in 8-bit 2's complement. Express your answer as an 8-bit 2's complement number. Indicate if it has an overflow by circling the corresponding YES or NO.

Part A (3 points): $00110110+00000100=$ \qquad Overflow? YES
NO

Part B (3 points): $01101001+10111010=$ \qquad Overflow? YES NO

Part C (3 points): $10101101+10110110=$ \qquad Overflow? YES
NO

Part D (3 points): 10011011-11001100 = \qquad Overflow? YES NO

Part E (3 points): $01010101+00101011=$ \qquad Overflow? YES NO

Problem 3 (20 points): Boolean Expressions and Truth Tables
Part A (10 points): Create the truth table for the following Boolean expression.

$$
F(x, y, z)=(\bar{x}+y z)+\bar{y}
$$

x	y	z	$F(x, y, z)$
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Part B (10 points): Create a Boolean expression from the following truth table.

a	b	c	$G(a, b, c)$
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Problem 4 (25 points): C Program Analysis
Consider the following "mystery" C program, to which the inputs $5,44,-2,13,50,60,55$ will be given until the program terminates. (Note that the program may not scan all of those values.) For this problem, analyze and execute the program in your head (you can make notes on this page or on the scratch pages if needed) to find the results of the computation.

```
/* mystery.c */
#include <stdio.h>
#define A_VAL 5
#define MIN_VAL -9999
int main()
{
    int ii;
    int value;
    int value1 = MIN_VAL;
    int value2 = MIN_VAL;
    for ( ii = 0; ii < A_VAL; ii = ii + 1 )
    {
        scanf("%d", &value);
        if ( value > value1 )
        {
            value2 = value1;
            value1 = value;
        }
        else
        if ( value > value2 )
        {
            value2 = value;
        }
            /* CHECKPOINT FOR PART A */
    }
    printf("The output value is %d\nGoodbye!", value2);
    return 0;
}
```

Part A (15 points): At the location in the program marked "CHECKPOINT FOR PART A", determine and list the current values of the variables for each time that the program reaches that checkpoint. Fill in only as many rows as needed below.

ii	value =	value1	value2 =
ii $=$	value =	value1 =	value2 =
ii =	value =	value1 =	value2 =
ii =	value =	value1 =	value2 =
ii $=$	value =	value1	value2 =
ii $=$	value =	value1	value2
ii $=$	value =	value1 =	value2 =

Part B (5 points): Write down EXACTLY the formatted text that will be printed on the terminal screen by the final printf statement in the program.

Part C (5 points): Complete the following sentence to describe the computational task performed by this "mystery" program.
The "mystery.c" program finds the of a series of \qquad [tell how many] integer input values."

Problem 5 (20 points): Short Answers

Answer the following questions in TWENTY-FIVE WORDS OR LESS. We do not promise to read more, so be concise in your answers.

Part A (5 points): Think about the operations provided by the water faucet abstraction. Even faucets that have operations for both hot and cold water almost never provide an operation of the form, "Turn on water at X degrees Fahrenheit." Twenty years ago, no faucets supported such an operation. Explain why such an operation is not common.

Part B (5 points): Recall the layers of abstraction in a computer system as discussed in the textbook and in class. Which layer specifies the operations that a specific computer, such as one based on an x86 processor or an ARM processor, is capable of executing? (Clearly draw an arrow to or circle one of the layers in the figure to the right.)

Problems
Algorithms
Programming Language
Machine/Instruction Set Architecture
Microarchitecture
Circuits
Devices

Part C (5 points): Write the complete sequence of numbers printed by the following code:

```
int i;
for (i = 0; 10 >= i; i = i + 3) {
    printf ("%d\n", i);
}
```


Problem 5, continued:

Part D (5 points): Consider the program below:

```
int main () {
    int i; /* 32-bit 2's complement */
    unsigned int j; /* 32-bit unsigned */
    printf ("Type a number: ");
    scanf ("%d", &i);
    j = i; /* copies all 32 bits */
    if (__) {
        printf ("Negative!\n");
    }
    return 0;
}
```

Fill in the blank by writing an expression based on variable j that checks whether the number entered is negative. Your expression may not use variable i.

Adapted from a LaTex ASCII table by (c) 2009 Michael Goerz

Dec	Hex	Char									
000	O0h	(nul)	001	01h	(soh)	002	02h	(stx)	003	03 h	(etx)
004	$04 h$	(eot)	005	05h	(enq)	006	06 h	(ack)	007	07 h	(bel)
008	08 h	(bs)	009	09h	(tab)	010	0Ah	(lf)	011	0Bh	(vt)
012	0Ch	(np)	013	0Dh	(cr)	014	0Eh	(so)	015	OFh	(si)
016	10 h	(dle)	017	11h	(dc1)	018	12h	(dc2)	019	13h	(dc3)
020	$14 h$	(dc4)	021	15h	(nak)	022	16 h	(syn)	023	17 h	(etb)
024	18 h	(can)	025	19h	(em)	026	1Ah	(eof)	027	1Bh	(esc)
028	1 Ch	(fs)	029	1Dh	(gs)	030	1Eh	(rs)	031	1Fh	(us)
032	$20 h$	(space)	033	21 h	!	034	22 h	"	035	23h	\#
036	$24 h$	\$	037	$25 h$	\%	038	26 h	\&	039	$27 h$,
040	28 h	(041	29h)	042	2Ah	*	043	2Bh	+
044	2 Ch	,	045	2Dh	-	046	2Eh	-	047	2Fh	1
048	$30 h$	0	049	31 h	1	050	32 h	2	051	33h	3
052	$34 h$	4	053	$35 h$	5	054	$36 h$	6	055	37 h	7
056	38 h	8	057	$39 h$	9	058	3Ah	:	059	3Bh	;
060	3 Ch	$<$	061	3Dh	=	062	3Eh	>	063	3Fh	?
064	$40 h$	@	065	41 h	A	066	42 h	B	067	43 h	C
068	$44 h$	D	069	45h	E	070	46 h	F	071	47 h	G
072	48 h	H	073	49h	I	074	4Ah	J	075	4Bh	K
076	4 Ch	L	077	4Dh	M	078	4Eh	N	079	4Fh	0
080	50 h	P	081	51 h	Q	082	52h	R	083	53h	S
084	$54 h$	T	085	$55 h$	U	086	56 h	V	087	57 h	W
088	58 h	X	089	$59 h$	Y	090	5Ah	Z	091	5Bh	[
092	5 Ch	\backslash	093	5Dh]	094	5Eh	^	095	5Fh	-
096	60 h	,	097	61 h	a	098	62 h	b	099	63 h	C
100	$64 h$	d	101	65 h	e	102	66 h	f	103	67 h	g
104	68 h	h	105	69h	i	106	6Ah	j	107	6Bh	k
108	6 Ch	1	109	6Dh	m	110	6Eh	n	111	6Fh	\bigcirc
112	$70 h$	p	113	71 h	q	114	72 h	r	115	73h	S
116	$74 h$	t	117	75h	u	118	76h	V	119	77 h	W
120	78 h	X	121	79h	Y	122	7Ah	z	123	7Bh	\{
124	7 Ch	\|	125	7Dh	\}	126	7Eh	~	127	7Fh	DEL

