
ECE 198 JL FL 13 Page 1

ECE 198JL Final Exam
Fall 2013

December 16th, 2013

Name: NetID:
 ____________________________________ _______________

Discussion Section:

10:00 AM [] JD1

11:00 AM [] JD2

12:00 PM [] JD7

1:00 PM [] JD9 [] JDA

2:00 PM [] JDB

3:00 PM [] JDC

4:00 PM [] JD8

 Be sure your exam booklet has 13 pages.

 Be sure to write your name and discussion section on the first page.

 Do not tear the exam booklet apart. You can only detach last page, if needed.

 We have provided LC-3 instructions set and other reference materials on separate pages.

 Use backs of pages for scratch work if needed.

 This is a closed book exam. You may not use a calculator.

 You are allowed two handwritten 8.5 x 11" sheets of notes.

 Absolutely no interaction between students is allowed.

 Be sure to clearly indicate any assumptions that you make.

 The questions are not weighted equally. Budget your time accordingly.

 Don’t panic, and good luck!

Problem 1 16 points: ___________

Problem 2 10 points: ___________

Problem 3 14 points: ___________

Problem 4 17 points: ___________

Problem 5 11 points: ___________

Problem 6 24 points: ___________

Problem 7 10 points: ___________

Problem 8 13 points: ___________

Problem 9 25 points: ___________

Total 140 points: ___________

ECE 198 JL FL 13 Page 2

Problem 1 (16 pts): LC-3 microinstructions

You are adding a new instruction, called ADS (add and store), to the LC-3 instruction set. This instruction adds two

values, just like the ADD instruction does, and stores the result to the memory instead of the register file. The destination

memory address is provided in the BaseR register specified by IR[11:9] bits. The binary encoding of this instruction is:

1 1 0 1

15 14 13 12 11 10 9 8 7 6

0 0 0

5 4 3 2 1 0

BaseR SR 1 SR 2

1 1 0 1

15 14 13 12 11 10 9 8 7 6

1

5 4 3 2 1 0

BaseR SR 1 Imm5

ADS
register mode

ADS
immediate

mode

a) In RTL form, give a sequence of (at most 4) microinstructions that implement the execute phase of the ADS

instruction. Make sure your implementation does not modify any values in the general-purpose register file and

does not set condition codes.

__

__

__

__

b) Determine the control ROM microinstructions that implement the RTL statements from part (a). Complete the table

below by filling in 0, 1, or x as appropriate. Use don’t cares wherever possible. Specify ROM addresses in decimal.

When you need additional states, state numbers 55, 56, 57, and 58 are available for your use.

R
O

M
 a

d
d

re
ss

IR
D

C
O

N
D

(3
)

J(
6

)

L
D

.B
E

N

L
D

.M
A

R

L
D

.M
D

R

L
D

.I
R

L
D

.P
C

L
D

.R
E

G

L
C

.C
C

G
at

eM
A

R
M

U
X

G
at

eM
D

R

G
at

eA
L

U

G
at

eP
C

M
A

R
M

U
X

P
C

M
U

X
(2

)

 A
D

D
R

1
M

U
X

A
D

D
R

2
M

U
X

(2
)

 D
R

M
U

X
(2

)

 S
R

1
M

U
X

(2
)

 A
L

U
K

(2
)

 M
IO

.E
N

R
.W

 Do not fill in this space.

Only fill in control word bits for the first two microinstructions.

ECE 198 JL FL 13 Page 3

Problem 2 (10 pts): LC-3 microsequencer

Suppose we added a new instruction LOGIC with opcode 1101 to the LC-3 that will perform one of four logic operations

(NAND, NOR, XOR, and OR) based on the IR[11:10] bits. To implement this new instruction, we need five new states in

the LC-3 FSM and need to modify the microsequencer circuit. The first state performs a secondary decode phase before

executing the four logic operations.

a) The microsequencer should use COND = 110 to determine the next state during the secondary decode phase of the

logic operation. Adding at most 2 AND gates, 2 OR gates, and wires, modify the microsequencer circuit so that it can

correctly decode the LOGIC instruction. A few modifications have already been made to give you a hint.

b) Based on your microsequencer circuit above, choose a set of viable next states for the execute phase states. Don’t

worry if the states are already in use by the LC-3 FSM. :)

ECE 198 JL FL 13 Page 4

Problem 3 (14 pts): LC-3 assembly program analysis

The following program prints a sprite. Sprite is a two-dimensional image of size 8x8 stored in

memory as a one-dimensional array, row after row, with one symbol per memory location. For

example, sprite shown on the right will occupy 64 memory locations starting from address

labeled as SPRITE where each location contains ASCII value of the symbol in the sprite:
.FILL x2A ; *

.FILL x2A ; *

…

* *

* ^ ^ *

* * * *

* *

* * * *

* ** *

a) Fill in missing instructions

.ORIG x3000

 AND R3, R3, #0

 ADD R3, R3, #8

NEXT_ROW ADD R3, R3, #0

 AND R4, R4, #0

 ADD R4, R4, #8

NEXT_COLUMN ________________

 BRz DONE_ROW

 LDR R0, R2, #0

 ADD R2, R2, #1

 ADD R4, R4, #-1

 BRnzp NEXT_COLUMN

DONE_ROW ________________

 OUT

 ADD R3, R3, #-1

 BRnzp NEXT_ROW

DONE ________________

ASCII_NL .FILL xA

SPRITE

.FILL x2A ; *

.FILL x2A ; *

…

.END

c) Complete the symbol table for

the above program.

Symbol Name Address

b) Draw a flowchart for the program to the left. Be specific, use

standard symbols only (ovals, rhombs, rectangles, etc.) The

flowchart is already partially built to give you an example of

what’s expected.

start

R2 <- sprite starting
address

R3 <- 8 (row counter)

R3 ≠0

stop

no

yes

ECE 198 JL FL 13 Page 5

Problem 4 (17 pts): LC-3 assembly language programming

Write a program in LC-3 assembly language that computes sum 1 + 2 + 4 + 8 + ⋯ where sum terms are the successive

powers of two. The number of terms is supplied by the user in memory at the location labeled as NUM. You can assume

that this value is such that no overflow will occur. The result should be stored in memory at the location labeled as SUM.

a) Draw flowchart for

the solution to the

above problem.

Start

Stop

b) Write a program in LC-3 assembly language that corresponds to the above flowchart. The program must start at

memory address x3000. The number of terms value must be initialized to 12. The program must terminate and it

must be well-documented such that it can be graded by a human.

ECE 198 JL FL 13 Page 6

Problem 5 (11 pts): Priority Encoder

A 4-to-2 priority encoder encodes a set of four binary input bits into a binary code. The indices of the input bits I3, I2, I1,

and I0 are decimal numbers that indicate which number should be encoded in unsigned binary representation in the output

bits E1E0 (where the indices of the output bits represent the power of 2 encoded by each E bit). For example, for input

I3I2I1I0 = 0100, the output is E1E0 = 10. If more than one input bit is one, the output bits give priority to the largest decimal

number and encode the index of that input. For example, for input I3I2I1I0 = 0101, the output is E1E0 = 10. A third output

V is 1 if and only if the input is valid. An input is valid only if at least one of the inputs is one. If none of the inputs is

one, the input is invalid and the value of the encoded output does not matter.

a) Complete the Karnaugh maps for outputs E1, E0, and V, then derive minimal Boolean expressions for each output.

b) Implement the 4-to-2 priority encoder using as few gates as possible.

ECE 198 JL FL 13 Page 7

Problem 6 (24 pts): Control unit design

THIS IS NOT THE LC-3!!!!!!!!!! An additional copy of the datapath can be torn off from the backpage.

Each major part of this problem can be answered without a correct answer to the other parts.

The Subtract and Branch if Negative (SBN) is a one instruction set computer. The SBN subtracts the contents at memory

address a from the contents at memory address b and stores the result at address b (M[b]←M[b]-M[a]). If the result from

the subtraction is negative, the program branches to the instruction at address c (PC ← c), else the program executes the

next instruction in memory (PC ←PC+1).

The assembly code for the SBN instruction takes the following form.

 SBN a, b, c ; M[b] ←M[b]-M[a]

 ; if (M[b]-M[a] ≤ 0) PC ← c, else PC ←PC+1

This ISA can be implemented with the following datapath and control unit. The datapath has 6 registers. Each register

has a load signal that controls when it loads a new value; these signals are not shown. The subtractor is a 32-bit two’s

complement subtraction circuit.

8-bit registers PC – Program Counter AAR – a addr register BAR – b addr register CAR – c addr register

32-bit registers ADR – a data register BDR – b data register

Status flip-flop N = 1, when subtraction yields a negative number

Memory Control CS = 1 when memory is active and 0 when inactive, R/W’ = 1 for read and 0 for write.

ECE 198 JL FL 13 Page 8

a) Below is the state diagram for the SBN architecture.

i. Place RTL instructions inside the empty states to finish the SBN state diagram.

ii. Indicate the values of the inputs denoted as R for the memory ready bit and N is the negative status flip-flop

for all unlabeled state transitions.

b) Using the table below, fill in the values of the control signals for states 0, 4, and 6. Use don’t cares when possible.

 32-bit reg 8-bit registers MUXes MEM

Si
gn

al
 N

am
e

LD
.C

C

LD
.A

D
R

LD
.B

D
R

LD
.P

C

LD
.A

A
R

LD
.B

A
R

LD
.C

A
R

P
C

M
U

X

B
D

R
M

U
X

A
D

D
R

M
U

X

C
S

R
/W

’

State 0

State 4

State 6

c) Based on the datapath and assembly instruction, draw the instruction format for the SBN instruction.
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ECE 198 JL FL 13 Page 9

Problem 7 (10 pts): Multiple-Choice Questions

For each multiple-choice question, you will receive +1 point for a correct answer, 0 points for not answering, and -1 point

for a wrong answer. Circle your selected answer.

a) Select the expression that correctly compares the two numbers. The first number is encoded in IEEE 754 32-bit

floating point representation and the second number is encoded in 8-bit 2’s complement notation.

i. 01000010111111000000000000000000 > 01000000

ii. 01000010111111000000000000000000 = 01000000

iii. 01000010111111000000000000000000 < 01000000

b) Which statement is true about the two sets of numbers? [note the bases]

i. (2.7)10 > (2.7)16 and (1.3)10 > (1.3)16

ii. (2.7)10 < (2.7)16 and (1.3)10 < (1.3)16

iii. (2.7)10 = (2.7)16 and (1.3)10 = (1.3)16

iv. (2.7)10 > (2.7)16 and (1.3)10 < (1.3)16

v. (2.7)10 < (2.7)16 and (1.3)10 > (1.3)16

c) A random access memory (RAM) chip has 32 words and 64 bits per word.

i. How many address lines does the RAM have? Circle one: 5 6 32 64

ii. How many data lines does the RAM have? Circle one: 5 6 32 64

d) Which of the following 4-bit two’s complement additions could result in overflow? Each variable (a, b, c, or d) is

either 0 or 1 independent of the values of the other variables.

 I) 0 0 a b II) 0 0 c d

 + 1 1 0 1 + 0 1 1 0

Circle one: i. I only ii. II only iii. I and II iv. Neither

e) Use the K-map below to answer the following questions
 gh

 00 01 11 10

ef

00 0 0 1 1

01 0 1 1 0

11 1 1 0 0

10 1 1 0 x

i. The K-map has how many prime implicants? Circle one: 3 4 5 6 7

ii. ̅ is an essential prime implicant (circle one): True or False

iii. The K-map has a unique minimal SOP Boolean expression: True or False

iv. A min SOP Boolean expression can be implemented using a 2-level NAND-NAND circuit: True or False

v. What is the minimum number of NOR gates that can implement the K-map? Circle one: 3 4 5

ECE 198 JL FL 13 Page 10

Problem 8 (13 pts): FSM

In this assignment you will be designing FSM of an arbiter circuit. In many systems, some resources are shared by many

subsystems. An arbiter is a circuit that coordinates access to these shared resources and resolves any conflicts. Consider

example system shown below. It consists of two subsystems that both use the same shared resource. When a subsystem

needs access to the shared resource, it activates (asserts) its request signal r. The arbiter monitors the use of the shared

resource and the incoming request signals and grants access to the shared resource by activating the corresponding grant

signal g. Once its grant signal is activated, a subsystem has permission to access the resource. After the task has been

completed, the subsystem releases the resource by deactivating (clearing) its request signal r. When both subsystems

simultaneously request access to the shared resource, priority is given to subsystem 0.

Draw a Moore state diagram for the above arbiter FSM. Assign states. Make sure to label each state with a name and

output and each edge with an input. Make sure to label all parts, inputs, outputs, edges, etc. Points will be deducted for

missing labels and messy drawing.

ECE 198 JL FL 13 Page 11

Problem 9 (25 pts): FSM implementation

Implement the FSM shown below using negative-edge triggered D flip-flops.

a) Based on the FSM shown below, drawn the next-state table. Use don’t cares when possible.

FSM

State A
00/101

State B
01/110State C

10/101

State D
11/111

name
S1S0/f2f1f0

ab = 0x

ab
 = x0

, 0
1

ab = x0

ab = 11

ab
 =

 x
x

ab = x1

ab = 1x

Next-state table

Current

State

External

Inputs
Next State External Outputs

S1 S0 a b S1
+
 S0

+
 f2 f1 f0

0 0

0 1

1 0

1 1

b) Based on the next-state table from part (a), fill in K-maps and write minimal SOP Boolean expressions for flip-flop

inputs D1 and D0.

 S1S0

 00 01 11 10

ab

00

01

11

10

D1 = __

 S1S0

 00 01 11 10

ab

00

01

11

10

D0 = __

c) Write minimal Boolean expressions for f2, f1, f0.

f2 = _________________ f1 = __________________ f0 = ______________________

ECE 198 JL FL 13 Page 12

d) Implement the FSM from part (a) using negative-edge triggered D flip-flops. Make sure to label all parts, inputs, and

outputs. Points will be deducted for missing labels and messy drawing.

ECE 198 JL FL 13 Page 13

Extra copy of page 7. You can detach it if needed.

The Subtract and Branch if Negative (SBN) is a one instruction set computer. The SBN subtracts the contents at memory

address a from the contents at memory address b and stores the result at address b (M[b]←M[b]-M[a]). If the result from

the subtraction is negative, the program branches to the instruction at address c (PC ← c), else the program executes the

next instruction in memory (PC ←PC+1).

The assembly code for the SBN instruction takes the following form.

 SBN a, b, c ; M[b] ←M[b]-M[a]

 ; if (M[b]-M[a] ≤ 0) PC ← c, else PC ←PC+1

This ISA can be implemented with the following datapath and control unit. The datapath has 6 registers. Each register

has a load signal that controls when it loads a new value, these signals are not shown. The subtractor is a 32-bit two’s

complement subtraction circuit.

8-bit registers PC – Program Counter AAR – a addr register BAR – b addr register CAR – c addr register

32-bit registers ADR – a data register BDR – b data register

Status flip-flop N = 1, when subtraction yields a negative number

Memory Control CS = 1 when memory is active and 0 when inactive, R/W’ = 1 for read and 0 for write.

