
ECE199JL Final Exam, Fall 2012
Tuesday 18 December

Name and UIUC Net ID:

• Be sure that your exam booklet has 13 pages.

• Write your name at the top of each page.

• This is a closed book exam.

• We have included a scratch sheet and two LC-3 reference pages.

• Appendix A of the textbook is available to you on request.

• You are allowed FOUR 8.5× 11" sheets of notes.

• Absolutely no interaction between students is allowed.

• Show all of your work.

• Challenge questions are marked with ***.

• Don’t panic, and good luck!

“I think there is a world market for maybe five computers.”
—Thomas Watson (Chairman of IBM), 1943

Problem 1 10 points

Problem 2 15 points

Problem 3 15 points

Problem 4 15 points

Problem 5 25 points

Problem 6 10 points

Problem 7 10 points

Total 100 points

Name and UIUC Net ID: 2

Problem 1 (10 points): Representations

Part A (3 points): Explain why anN -bit signed magnitude representation allows you to represent only 2N − 1
different numbers.

Part B (4 points): Two N -bit 2’s complement numbers,A andB, are added to
find their sumS, as shown to the right.

Write a Boolean expression for the overflow condition for theaddition in terms of
the variables shown.

AN−1AN−2. . .A2A1A0

+ BN−1BN−2. . .B2B1B0

SN−1 SN−2 . . .S2 S1 S0

Part C (3 points): As you know, addition of two IEEE single-precision floating-point numbers is not associative.
In other words, for some values ofA, B, andC,

(A+B) + C 6= A+ (B + C)

Give an example of values forA, B, andC for which this lack of associativity holds (write decimal numbers or scien-
tific notation—you need not translate to the binary representation for IEEE floating-point!).

A

B

C

Name and UIUC Net ID: 3

Problem 2 (15 points): Logic

The block diagram below illustrates a specializedN -bit
unsigned comparator. The comparator operates on two
unsigned numbers,A and B, to produce outputsPN

andQN with meanings defined in the table to the right.

PN QN Meaning
0 0 A < B and bothA andB are odd
0 1 A ≥ B and bothA andB are odd
1 0 A < B and (A andB are not both odd)
1 1 A ≥ B and (A andB are not both odd)

P

Q
q

p
P

Q

R

S
q

p A B

A B

A B

A B

. . .
A B

A B

A B

A B

P

Q

R

S
q

p
P

Q

R

S
q

p

even/odd
detector

1

1

2

2

0 0

comparator
bit

comparator
bit

slice N−1 slice N−2

N−1 N−1 N−2 N−2

comparator
bit

1 1

slice 1

N−1

N−1

N

N

Part A (5 points): Design the even/odd detector. Show all work, including drawing a gate-level diagram imple-
menting outputsP andQ in terms of inputsA andB.

Part B (10 points): Design the general bit slice for this comparator. Show all work, including drawing a gate-level
diagram implementing outputsP andQ in terms of inputsA, B, R, andS.

Name and UIUC Net ID: 4

Problem 3 (15 points): Finite State Machines

Part A (5 points): Professor Lumetta promised Professor Cangellaris to
design a holiday light display for the new ECE building, but Lumetta has been
too busy writing exam problems!

The design to the right shows what he needs: combinational logic that translates
the output of a binary counter (counts upward) into RGB signals according to
the following repeating sequence in the table below.

TheRST input to the counter forces it back to000 in the following cycle.

= 4 ?

your
logic

3

3−bit binary
counter

RST

S
B
G
R

Design the logic needed to compute
the RGB signals given the state
S2S1S0 of the counter. Use a few
gates along with the decoder shown
to the right to implement the func-
tionsR, G, andB as described by
the table above.

color RGB

RED 100
YELLOW 110
GREEN 010
BLUE 001

PURPLE 101

3
S

0
1
2
3
4
5
6
7

Part B (10 points): Draw an abstract transition diagram for a sequence recognizer that identifies the following
sequences: 110, 0110, and 1100. In particular, the outputR of the sequencer should be 1 whenever the inputB has
seen any of those three sequences in the last cycles.

Use as few states as possible, explain the meaning of your states, and be sure to specify the starting state.

Note that your diagram states should be labeled with names and output bit, but not with internal state bits (you do not
need to pick a representation), but the arcs should be labeled with input combinations.

Name and UIUC Net ID: 5

Problem 4*** (15 points): Machine Code Analysis

An LC-3 program is located in memory location x3000 to x3007.

The program starts executing at x3000. If we keep track of allvalues loaded
into the MAR as the program executes, we obtain the sequence shown to the
right. Such a sequence of values is referred to as a trace.

Fill in the table below with the bits stored in locations x3000 to x3007, then
translate the bits to assembly code (fill in the blanks at the bottom of the page).

Some of the bits in the table have been filled in already—use these to deduce
the values of the others such that the resulting program leads to the MAR trace
shown to the right.

You will need some additional information:
• All registers contain x0000 when the program starts.
• Data stored in location x4FF8 and x5000 are x2012.
• HALT is TRAP x25.

MAR trace
first value in MAR x3000

second value in MAR x3007
third value in MAR x3001

. . . x3003
x3007
x5000
x3004
x4FF8
x3005
x3006
x3002

x3000 0 0 1 0 0 0 0
x3001 1 0 0 0 0 0 0 0 0 0 0 1
x3002 1 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1
x3003 0 0 1
x3004 0 1 1 0 0 1 0
x3005 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 1
x3006 0 0 0
x3007

Translate the bits to LC-3 assembly code (not RTL) with numeric operands. Do not use labels.

x3000 __

x3001 __

x3002 __

x3003 __

x3004 __

x3005 __

x3006 __

x3007 __

Name and UIUC Net ID: 6

Problem 5 (25 points): Assembly Code

Part A (5 points): The LC-3 assembler produces the
symbol table below when assembling the code shown to the
right. Fill in the blank entries.

// Symbol table
// Scope level 0:
// Symbol Name Address
// ---------------- ------------
//
// MAIN ___________________
// LD1 x3001
// ST1 x3006
// LD2 x3007
// ST2 x300C
// INIT x300F
//
// FOO ___________________
// CALC x301B
// NEXT x3020
// DONE x3024
// RETN x302A
// OP1 x302B
// OP2 x302C
// EXT x302D
// FLAG x302E
//
// NAME ___________________
//
// SIGN ___________________
//
// MASK ___________________

.ORIG x3000

MAIN AND R3,R3,#0
LD1 LD R1,OP1

LD R4,SIGN
AND R5,R1,R4
BRz ST1
JSR FOO

ST1 ADD R2,R1,#0
LD2 LD R1,OP2

LD R4,SIGN
AND R5,R1,R4
BRz ST2
JSR FOO

ST2 ADD R1,R1,#0
AND R3,R3,#1
ST R3,FLAG

INIT AND R4,R4,#0
AND R5,R5,#0
ADD R5,R5,#1
AND R6,R6,#0
JSR CALC
HALT

FOO ADD R3,R3,#1
LD R4,EXT
ADD R1,R1,R4
NOT R1,R1
ADD R1,R1,#1
RET

CALC ADD R3,R4,#-6
BRzp DONE
AND R3,R5,R2
BRz NEXT
ADD R6,R1,R6

NEXT ADD R5,R5,R5
ADD R1,R1,R1
ADD R4,R4,#1
BRnzp CALC

DONE LD R3,FLAG
BRz RETN
NOT R6,R6
ADD R6,R6,#1
LD R4,MASK
AND R6,R6,R4

RETN RET

OP1 .FILL x000B
OP2 .FILL x0007
EXT .FILL xFF00
FLAG .BLKW #1
NAME .STRINGZ "Read this"
SIGN .FILL x0080
MASK .FILL x4FFF

.END

Name and UIUC Net ID: 7

Problem 5, continued:

Part B (10 points): The following LC-3 program determines whether or not two strings match (that is, whether
or not they have identical contents). The first string startsat memory location x4000, and the second string starts
at memory location x5000. Both strings are in the .STRINGZ format. If the two strings are the same, the program
terminates with a 1 in R6. If the two strings are different, the program terminates with a 0 in R6. Write one LC-3
assembly instruction into each blank to complete the program. You should not need to define any new labels.

.ORIG x3000
LD R1, STRING1
JSR LENGTH

; part A
LD R1, STRING2
JSR LENGTH

; part B
NOT R4, R4
ADD R4, R4, #1
ADD R4, R4, R3
BRnp NO

LD R1, STRING1
LD R2, STRING2

CONTINUE LDR R3, R1, #0
LDR R4, R2, #0

; part C
NOT R4, R4
ADD R4, R4, #1
ADD R4, R4, R3
BRnp NO

; part D

; part E
BRnzp CONTINUE

YES AND R6, R6, #0
ADD R6, R6, #1
BRnzp DONE

NO AND R6, R6, #0
DONE HALT

; a subroutine
LENGTH AND R0, R0, #0
COUNT LDR R5, R1, #0

BRz RETURN
ADD R0, R0, #1
ADD R1, R1, #1
BRnzp COUNT

RETURN RET

STRING1 .FILL x4000
STRING2 .FILL x5000

.END

Name and UIUC Net ID: 8

Problem 5, continued:

Part C (10 points): Write a program in LC-3 assembly language that computesRESULT = |A − 4|.
The| · | notation means “absolute value.” Your program must have thefollowing characteristics:

• The program must start at memory address x2800.
• The valuesA andRESULT must be placed at the two memory addresses that immediately follow the last

instruction in the program. These two addresses must be labeledA andRESULT, respectively.
• The valueA must be initialized to 3.
• The program must produce the correct result for any initial value ofA in the range [-1000,1000].
• The program must load the value ofA, and store the correctRESULT , from/to the labeled memory locations.
• The program must execute HALT upon completion of this task.
• Appropriately comment your program so that the grader can understand your intent.

Name and UIUC Net ID: 9

Problem 6 (10 points): LC-3 Implementation

Attached to the back of this exam is a copy of the LC-3 state machine (reproduced from the textbook).Tear it off for
use with this problem.

Fill in the table below with the appropriate state numbers from that diagram for the ordered sequence of states that are
active during the processing of an LC-3 LDR instruction.Note: you may not need all rows of the table below.

Next, for each state, indicate whether each control signal is active (1) or inactive (0). For your convenience, the LC-3
datapath is reproduced below (again from the textbook).DO NOT LEAVE BLANK ENTRIES.

State # Gate.PC LD.PC LD.IR LD.CC LD.MAR LD.MDR GateMDR
18
33
35
32

MEMORY

OUTPUTINPUT

DSR

DDRKBDR

ADDR. CTL.
LOGIC

GateMDR

MDR LD.MDR

INMUX

MAR LD.MAR

2

KBSR

MIO.EN

R

MEM.EN

R.W MIO.EN

SEXTSEXT

SEXT

SEXT
[5:0]

[8:0]

[10:0]

+1

GateMARMUX

16

16
16

16

16

16

1616

16

16

16

1616

16

ALU

B A

GateALU

16

SR2MUX

PC

+

IR

ZEXT

R
N Z P

LOGIC

SR2
OUT

SR1
OUT

REG

FILE

[7:0]

2

PCMUX

LD.CC

GatePC

LD.PC

LD.IR

MARMUX

ALUK

16

16

16

16
3

3

2

[4:0]

0

ADDR1MUX

2

ADDR2MUX

SR1SR2

LD.REG

DR

3

CONTROL

Name and UIUC Net ID: 10

Problem 7 (10 points): Critical Paths and Control Unit Design

Part A (3 points): Explain why the critical path through a tree-structured adder such as a Kogge-Stone adder is
typically shorter than the critical path through a ripple carry adder.

Part B (4 points): Explain how a memory can be used to implementN Boolean logic functions onM variables.
Be specific about the size of memory needed. (You may want to draw a picture.)

Part C (3 points): What is a microinstruction?

Name and UIUC Net ID: 11

This page provided as scratch paper. If you need us to look at this page when grading, indicate this needon the page
of the corresponding problem(not here!).

LD

LDI

LDR

LEA

NOT

ST

STI

STR

ADD

ADD

AND

AND

BR

JMP

JSR

TRAP

0001 DR SR1 0 00 SR2

0001 SR1 1

000

imm5

0101 SR1 0 00 SR2

0101 SR1 1 imm5

0000 pzn PCoffset9

1100 BaseR 000000

0100 1

DR

DR

DR

PCoffset11

1111

DR ← SR1 + SR2, Setcc

ADD DR, SR1, SR2

DR ← SR1 + SEXT(imm5), Setcc

ADD DR, SR1, imm5

DR ← SR1 AND SR2, Setcc

DR ← SR1 AND SEXT(imm5), Setcc

AND DR, SR1, SR2

AND DR, SR1, imm5

BR{nzp} PCoffset9

((n AND N) OR (z AND Z) OR (p AND P)):
PC ← PC + SEXT(PCoffset9)

JMP BaseR

PC ← BaseR

R7 ← PC, PC ← PC + SEXT(PCoffset11)

JSR PCoffset11

R7 ← PC, PC ← M[ZEXT(trapvect8)]

TRAP trapvect8

0010 PCoffset9DR

1010 PCoffset9DR

0110 offset6

1110 PCoffset9DR

DR BaseR

1001 111111DR SR

0011 PCoffset9SR

1011 PCoffset9SR

0111 offset6SR BaseR

LD DR, PCoffset9

LDI DR, PCoffset9

LDR DR, BaseR, offset6

LEA DR, PCoffset9

NOT DR, SR

ST SR, PCoffset9

DR ← M[PC + SEXT(PCoffset9)], Setcc

DR ← M[M[PC + SEXT(PCoffset9)]], Setcc

DR ← M[BaseR + SEXT(offset6)], Setcc

DR ← PC + SEXT(PCoffset9), Setcc

DR ← NOT SR, Setcc

M[PC + SEXT(PCoffset9)] ← SR

M[M[PC + SEXT(PCoffset9)]] ← SR

M[BaseR + SEXT(offset6)] ← SR

STI SR, PCoffset9

STR SR, BaseR, offset6

NOTES: RTL corresponds to execution (after fetch!); JSRR not shown

0000 trapvect8

For use with Problem 6.

R

R R

R R

PC<–BaseR

20

To 18

PC<–BaseR

R7<–PC

[IR[11]]

1 0

12

4

PC<–PC+off11

21

To 18

To 18

To 18

To 18

To 18

To 8

(See Figure C.7)

RTI

MAR <–PC

PC<–PC+1

[INT]

MDR<–M

IR<–MDR

R

DR<–SR1+OP2*

set CC

DR<–SR1&OP2*

set CC

[BEN]

PC<–PC+off9

PC<–MDR

MAR<–PC+off9

MDR<–M[MAR]

RR

MAR<–MDR

MAR<–PC+off9

MDR<–M[MAR]

MAR<–MDR

MAR<–B+off6

MAR<–PC+off9

MAR<–B+off6

MAR<–PC+off9

MDR<–SR

DR<–MDR

set CC
M[MAR]<–MDR

18

32

1

5

76

11

3

0

0

1
22

29

3126

23

24

25

27

To 18

To 18

To 18 To 18

To 18

0

R R

MDR<–M[MAR]

To 49

(See Figure C.7)

28

30

2

10

NOTES

16

MDR<–M[MAR]

R7<–PC

B+off6 : Base + SEXT[offset6]

PC+off9 : PC + SEXT{offset9]

PC+off11 : PC + SEXT[offset11]

*OP2 may be SR2 or SEXT[imm5]

DR<–NOT(SR)

set CC

9

NOT

14
DR<–PC+off9

set CC

LEA LD LDR LDI STI STR ST

JSR

ADD

AND

JMP

BR

1

RR

BEN<–IR[11] & N + IR[10] & Z + IR[9] & P

[IR[15:12]]

1101

To 13

33

35

MAR<–ZEXT[IR[7:0]]

15

TRAP

