MATLAB

Polynomials - mostly

Announcements

quiz: quiz23 due on Tues 10/12
lab: lab on Fri 13/12
hw: hw12 due Wed 11/12

Roadmap

A. Create and evaluate polynomial arrays.
B. Find function zeros and polynomial roots.
C. Minimize functions within bounds ($f m i n b n d$).
D. Numerically differentiate data using polyder.
E. Numerically integrate data using polyint.

MATLAB Review

Some stuff

1. Function - write in $X X X$.m file; only 1 function in 1 file; preferably name.m is the same name of the function
2. How to change directory in matlab
3. recursive vs loop

2's Complement Representation

Question 0

```
D = [ 12 ; 3 4 ];
\(\mathrm{g}=\mathrm{D} .{ }^{\wedge} 2\);
```

What is the value of g ?

```
A [ 1 2; 3 4 ]
B [ 1 4; 3 4 ]
C [ 1 4; 9 4 ]
D [ 1 4; 9 16 ]
E None of the above (an error occurs)
```


Question 0

```
D = [ 12 ; 3 4 ];
\(\mathrm{g}=\mathrm{D} .{ }^{\wedge} 2\);
```

What is the value of g ?

```
A [ 1 2; 3 4 ]
B [ 1 4; 3 4 ]
C [ 1 4; 9 4 ]
D [ 1 4; 9 16 ] ***
```

E None of the above (an error occurs)

Question 1

$$
\begin{aligned}
& \text { D = [} 12 \text {; } 3 \text { 4]; } \\
& \mathrm{x}=\left[\begin{array}{ll}
1 & 0
\end{array}\right]^{\prime} ; \\
& \mathrm{f}=\mathrm{D} \text { * } \mathrm{x} \text {; }
\end{aligned}
$$

What is the value of f ?
A [1 ; 3]
B [1 0; 3 0]
C [1 ; 2]
D [$\left.\begin{array}{lll}1 & 2\end{array}\right]$
E [12 ; 0 0]
F None of the above (an error occurs)

Question 1

$$
\begin{aligned}
& \mathrm{D}=\left[\begin{array}{lllll}
\mathrm{l} & 2 & ; & 4
\end{array}\right] ; \\
& \mathrm{x}=\left[\begin{array}{ll}
1 & 0
\end{array}\right]^{\prime} ; \\
& \mathrm{f}=\mathrm{D}
\end{aligned}
$$

What is the value of f ?
A [1 ; 3] ***
B [1 0; 3 0]
C [1 ; 2]
D [$\begin{array}{lll}1 & 2 &]\end{array}$
E [12 ; 0 0]
F None of the above (an error occurs)

Question 2

$$
\begin{aligned}
& \text { D = [} 12 \text {; } 34 \text {]; } \\
& \mathrm{x}=\left[\begin{array}{ll}
1 & 0
\end{array}\right]^{\prime} ; \\
& \text { g = D .* } x \text {; }
\end{aligned}
$$

What is the value of g ?
A [1 ; 3]
B [1 0; 3 0]
C [1 ; 2]
D [$\left.\begin{array}{lll}1 & 2\end{array}\right]$
E [12 ; 0]
F None of the above (an error occurs)

Question 2

$$
\begin{aligned}
& \text { D = [} 12 \text {; } 3 \text { 4]; } \\
& \mathrm{x}=\left[\begin{array}{ll}
1 & 0
\end{array}\right]^{\prime} ; \\
& \text { g = D .* } x \text {; }
\end{aligned}
$$

What is the value of g ?

```
A [ 1 ; 3 ]
B [ 1 0; 3 0]
C [ 1 ; 2 ]
D [ llll
E [ 1 2 ; 0 0 ] ***why?
```

F None of the above (an error occurs)

Question 3

$$
\begin{aligned}
& \text { D = [} 12 \text {; } 34 \text {]; } \\
& \mathrm{x}=\left[\begin{array}{ll}
1 & 0
\end{array}\right] \text {; } \\
& \text { g = D .* } x \text {; }
\end{aligned}
$$

What is the value of g ?
A [1 ; 3]
B [1 0; 3 0]
C [1 ; 2]
D [$\left.\begin{array}{lll}1 & 2\end{array}\right]$
E [12 ; 0 0]
F None of the above (an error occurs)

Question 3

$$
\begin{aligned}
& \text { D = [} 12 \text {; } 34 \text {]; } \\
& \mathrm{x}=\left[\begin{array}{ll}
1 & 0
\end{array}\right] \text {; } \\
& \text { g = D .* } x \text {; }
\end{aligned}
$$

What is the value of g ?
A [1 ; 3]
B [1 0; 3 0] $k \star * w h y ?$
C [1 ; 2]
D [$\left.\begin{array}{lll}1 & 2\end{array}\right]$
E [12 ; 0 0]
F None of the above (an error occurs)

Question 4

$$
\begin{aligned}
& \mathrm{D}=\left[\begin{array}{lllll}
1 & 2 & ; & 3 & 4
\end{array}\right] ; \\
& \mathrm{x}=\left[\begin{array}{llll}
1 & 0 & 0
\end{array}\right] ; \\
& \mathrm{g}=\mathrm{D} \\
& .
\end{aligned}
$$

What is the value of g ?
A [1 ; 3]
B [1 0; 3 0]
C [1 ; 2]
D [$\left.\begin{array}{lll}1 & 2\end{array}\right]$
E [12 ; 0 0]
F None of the above (an error occurs)

Question 4

$$
\begin{aligned}
\mathrm{D} & =\left[\begin{array}{lllll}
1 & 2 & ; & 3 & 4
\end{array}\right] ; \\
\mathrm{x} & =\left[\begin{array}{llll}
1 & 0 & 0
\end{array}\right] ; \\
\mathrm{g} & =\mathrm{D} \\
. & \mathrm{*}
\end{aligned} \mathrm{x} ;
$$

What is the value of g ?

```
A [ 1 ; 3 ]
B [ 1 0; 3 0]
C [ 1 ; 2 ]
D [ llll
E [ 1 2 ; 0 0 ]
```

F None of the above (an error occurs) $\star \star \star$ why?

Question 5

$$
\begin{aligned}
D & =\left[\begin{array}{lll}
1 & 2 &]^{\prime} ; \\
\mathrm{x} & =\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right] ; \\
\mathrm{g} & =\mathrm{D} & . * \\
\mathrm{x}
\end{array}\right.
\end{aligned}
$$

What is the value of g ?

Question 5

$$
\begin{aligned}
D & =\left[\begin{array}{lll}
1 & 2 &]^{\prime} ; \\
\mathrm{x} & =\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right] ; \\
\mathrm{g} & =\mathrm{D} & . * \\
\mathrm{x}
\end{array}\right.
\end{aligned}
$$

What is the value of g ?

$$
\begin{array}{lll}
9= \\
& \\
& \\
& 1 & 0 \\
2 & 0 & 0 \\
& 0
\end{array}
$$

Question 6

$$
\begin{aligned}
& \mathrm{D}=[12 ; 34 ; 56 ; 78] ; \\
& \mathrm{x}=[12 ; 34] ; \\
& \mathrm{g}=\mathrm{D} . * \mathrm{x} ;
\end{aligned}
$$

What is the value of g ?

Question 6

$$
\begin{aligned}
& \mathrm{D}=[12 ; 34 ; 56 ; 78] ; \\
& \mathrm{x}=[12 ; 34] ; \\
& \mathrm{g}=\mathrm{D} . * \mathrm{x} ;
\end{aligned}
$$

What is the value of g ?
Error

elementwise operations

A Can operate when the two matrices are of the same dimensions

B Also when the other is a scalar (== number)
C sometimes when the other is a 1D row vector or 1D column vector

Polynomials

Polynomials

How do you solve this?

$$
x^{2}-4
$$

Polynomials

How do you solve this?

$$
x^{2}-4
$$

How about this?

$$
3 x^{3}+x^{2}-4
$$

Polynomials

How do you solve this?

$$
x^{2}-4
$$

How about this?

$$
3 x^{3}+x^{2}-4
$$

MATLAB represents polynomials as row vectors of coefficients, from the highest-order term to the lowest.

Polynomials

How do you solve this?

$$
x^{2}-4
$$

How about this?

$$
3 x^{3}+x^{2}-4
$$

MATLAB represents polynomials as row vectors of coefficients, from the highest-order term to the lowest.
$\left[\begin{array}{lllll}3 & 1 & 0 & -4\end{array}\right]$

Polynomials

$$
a_{1} x^{n}+a_{2} x^{n-1}+\cdots+a_{n-1} x^{2}+a_{n} x+a_{n+1}
$$

A polynomial is a length $(n+1)$ array.

$$
5 x^{5}+5 x^{4}+4 x^{3}+2 x
$$

How would this polynomial be represented in MATLAB?

```
A [ [ 5 5 5 4 0 2 ]
B [[ 2 0 4 4 5 5 ]
C [[\begin{array}{llllllll}{5}&{5}&{4}&{0}&{2}&{0}\end{array}]
D [ [ 0 2 0 4 4 5 5 ]
```

$$
5 x^{5}+5 x^{4}+4 x^{3}+2 x
$$

How would this polynomial be represented in MATLAB?

```
A [ [ 5 5 5 4 0 2 ]
B [[ 2 0 4 4 5 5 ]
C [[ 5 5 5 4 0 0 2 0 []*
D [ 0 2 0 0 4 5 5 ]
```


Polynomials

$$
3 x^{3}+x^{2}-4
$$

To evaluate a polynomial for a particular value of x, use polyval:

Polynomials

$$
3 x^{3}+x^{2}-4
$$

To evaluate a polynomial for a particular value of x, use polyval:
polyval ($\left[\begin{array}{llll}3 & 1 & 0 & 4\end{array}\right], 5$) \% for $x=5$
ans =

404

Polynomials

To plot a polynomial:

$$
\begin{aligned}
& p=\left[\begin{array}{lllll}
-1 & 0 & 4 & 0
\end{array}\right] \quad \text { ocoefficients of polynomial } \\
& x=-5: 0.1: 5 \quad \text { ox-value } \\
& y=p o l y v a l(p, x ~) ~ \% y \text {-value } \\
& \text { plot (} \left.x, y, r^{\prime} r-\right)^{\prime} \text {) }
\end{aligned}
$$

Polynomials - multiply

$$
\begin{aligned}
& u=3 x^{2}-1 \\
& v=2 x+5 \\
& w=u * v=\left(x^{2}-1\right)(x+5)=6 x^{3}+15 x^{2}-2 x-5 \\
& u=\left[\begin{array}{lll}
3 & 0 & -1
\end{array}\right] ; \\
& \mathrm{v}=\left[\begin{array}{ll}
2 & 5
\end{array}\right] ; \\
& \mathrm{w}=\mathrm{u} \mathrm{v} \text { ? ??? }
\end{aligned}
$$

Polynomials - multiply

To multiply a polynomial, * won't work; use conv instead:

$$
\mathrm{w}=\operatorname{conv}(\mathrm{u}, \mathrm{v})
$$

$$
\begin{aligned}
& u=3 x^{2}-1 \\
& v=2 x+5 \\
& w=u * v=\left(x^{2}-1\right)(x+5)=6 x^{3}+15 x^{2}-2 x-5 \\
& u=\left[\begin{array}{lll}
3 & 0 & -1
\end{array}\right] ; \\
& \mathrm{v}=\left[\begin{array}{ll}
2 & 5
\end{array}\right] ; \\
& \mathrm{w}=\mathrm{u} * \mathrm{v} \text { ??? }
\end{aligned}
$$

Polynomials - integrate

To integrate a polynomial between [a, b], use polyint:

$$
x^{3}-x
$$

between [0,1]
integrand $=\left[\begin{array}{llll}1 & 0 & -1 & 0\end{array}\right]$;

Polynomials -integrate

To integrate a polynomial between [a, b], use polyint:

$$
x^{3}-x
$$

between [0, 1]

$$
\begin{aligned}
& \int_{0}^{1} d x x^{3}-x \\
& \text { integrand }=\left[\begin{array}{ccc}
1 & 0 & -1
\end{array}\right] ; \\
& \text { antiderivative }=\text { polyint(integrand); }
\end{aligned}
$$

Polynomials - integrate

To integrate a polynomial between [a, b], use polyint:

$$
x^{3}-x
$$

between [0, 1]

$$
\int_{0}^{1} d x x^{3}-x=\frac{x^{4}}{4}-\left.\frac{x^{2}}{2}\right|_{0} ^{1}=\frac{1}{4}-\frac{1}{2}-\frac{0}{4}+\frac{0}{2}=-\frac{1}{4}
$$

integrand = [$1 \quad 0$-1 0];
antiderivative = polyint(integrand); integral_l = polyval(antiderivative, 1); integral_r = polyval(antiderivative,0); integral = integral_l - integral_r;
integral =
-0. 2500

Polynomials - dy/dx

To differentiate a polynomial, use polyder:

$$
\begin{aligned}
& p(x)=x^{5}-x^{4}+x^{3}-x^{2}+x-1 \\
& \frac{d p}{d x}=5 x^{4}-4 x^{3}+3 x^{2}-2 x+1
\end{aligned}
$$

$$
\text { polynomial }=\left[\begin{array}{llllll}
1 & -1 & 1 & -1 & 1 & -1
\end{array}\right] ;
$$

derivative = polyder(polynomial);

Polynomials - dy/dx

To differentiate a polynomial, use polyder:

$$
\begin{aligned}
& p(x)=x^{5}-x^{4}+x^{3}-x^{2}+x-1 \\
& \frac{d p}{d x}=5 x^{4}-4 x^{3}+3 x^{2}-2 x+1
\end{aligned}
$$

polynomial $=\left[\begin{array}{llllll}1 & -1 & 1 & -1 & 1 & -1\end{array}\right] ;$
derivative = polyder(polynomial);
derivative =

$$
\begin{array}{lllll}
5 & -4 & 3 & -2 & 1
\end{array}
$$

Optimize/Solving

Optimization

Given a function $f(\underline{x})$, find $\underline{x}=\underline{x}^{*}$ such that $f\left(\underline{x}^{*}\right)$ is maximized (or minimized, or equal to zero).
The goal is to search the domain for the \underline{x}^{*} which yields the solution $f\left(\underline{x}^{*}\right)$.

Find Roots

$$
3 x^{3}+x^{2}-4
$$

To obtain the roots of the polynomial (as you would use when factoring it), use roots:

Find Roots

$$
3 x^{3}+x^{2}-4
$$

To obtain the roots of the polynomial (as you would use when factoring it), use roots:

```
roots( [ 3 1 0 4 ] )
```


Find Polynomial from roots

$$
p(x)=x^{5}-x^{4}+x^{3}-x^{2}+x-1
$$

$$
\begin{aligned}
& \qquad p(x)=(x-1)\left(x^{2}-x+1\right)\left(x^{2}+x-1\right) \\
& \text { polynomial }=\left[\begin{array}{cccccc}
1 & -1 & 1 & -1 & 1 & -1
\end{array}\right] ; \\
& r=\operatorname{roots}(\text { polynomial })
\end{aligned}
$$

Find Polynomial from roots

$$
p(x)=x^{5}-x^{4}+x^{3}-x^{2}+x-1
$$

$$
\begin{aligned}
& \qquad p(x)=(x-1)\left(x^{2}-x+1\right)\left(x^{2}+x-1\right) \\
& \text { polynomial }=\left[\begin{array}{cccccc}
1 & -1 & 1 & -1 & 1 & -1
\end{array}\right] ; \\
& r=\operatorname{roots}(\text { polynomial) }
\end{aligned}
$$

poly goes the other way: a polynomial array from a set of roots.
$\operatorname{poly}(r)$ to get the above equation back

Find Solutions

$$
\cos x=e^{-x}-4
$$

Find Solutions

$$
\cos x=e^{-x}-4
$$

Rewrite this equation as a function in standard form:

$$
f(x)=\cos x-e^{-x}+4
$$

Finding Solutions

$$
f(x)=\cos x-e^{-x}+4
$$

or in MATLAB

$$
f=(@ x) \cos (x)-\exp (-x)+4
$$

1. Solve the equation with
fzero (if seeking zeros)
fminbnd (if seeking minima).

Finding Solutions

$$
f(x)=\cos x-e^{-x}+4
$$

or in MATLAB

$$
f=(@ x) \cos (x)-\exp (-x)+4
$$

1. Solve the equation with

> fzero (if seeking zeros)
fminbnd (if seeking minima).
2. $x=$ fzero ($f, x 0$) tries to find a zero of fun near $x 0$.

How do we find all the roots in a range??? Think about it.

Finding Solutions

$$
f(x)=\cos x-e^{-x}+4
$$

or in MATLAB

$$
f=(@ x) \cos (x)-\exp (-x)+4
$$

1. Solve the equation with

> fzero (if seeking zeros)
fminbod (if seeking minima).
2. $x=$ fzero ($f, x 0$) tries to find a zero of fun near $x 0$.

How do we find all the roots in a range??? Think about it.
3. $x=$ fminbnd ($f, x 1, x 2$) returns a value x that is a local minimium of the function (defined in f) in the interval [x1, x2].

NOTE: fminbnd ($f, x 1, x 2$) with f not $@ f$

Optimization

```
x = -1:.01:2;
y = humps ( x ); \% a matlab function
```

figure
plot(x, y)
xlabel('x')
ylabel('f(x)')
grid on
xstar $=$ fminbond (@humps,0.3,1)
[xstar,ystar] = fminbnd (@humps,0.3,1)

Optimization

Optimization

```
x = -1:.01:2;
y = humps( x ); % a matlab function
figure
plot( x,y )
xlabel( 'x' )
ylabel( 'f(x)' )
grid on
xstar = fminbnd( @humps,0.3,1 )
[ xstar,ystar ] = fminbnd( @humps,0.3,1 )
```

Note the @inside fminbnd (@humps, 0.3,1) How do we maximize a function??? Think about it

The @ sign

Compare:
M1:
$y=$ humps (x); \% a matlab or your function in .m file xstar $=$ fminbnd $($ @humps, $0.3,1$)
and
M2:
$\mathrm{f}=(@ \mathrm{x}) \cos (\mathrm{x})-\exp (-\mathrm{x})+4$
xstar $=$ fminbnd $(\mathrm{f}, 0.3,1$)

The @ sign

Compare:
M1:
$y=$ humps (x); \% a matlab or your function in .m file xstar $=$ fminbnd $($ @humps, $0.3,1$)
and
M2:
$\mathrm{f}=(@ \mathrm{x}) \cos (\mathrm{x})-\exp (-\mathrm{x})+4$
xstar $=$ fminbnd $(f, 0.3,1)$

Use @ when your function is not defined in the same code.

Numerical Integration

Numerical Integration

\% simulated data set of measurements

```
x = linspace( 0,10,11 );
y = [ 0.11 0.09 0.09 0.10 0.11 0.11
    0.09 0.10 0.08 0.09 0.11 ];
```

figure;
plot(x,y,'ro');
ylim([00.2]);

Numerical Integration

\% simulated data set of measurements
x = linspace(0,10,11);
$y=\left[\begin{array}{rrrrrrr}0.11 & 0.09 & 0.09 & 0.10 & 0.11 & 0.11 \\ 0.09 & 0.10 & 0.08 & 0.09 & 0.11\end{array}\right] ;$
figure;
plot(x,y,'ro');
ylim([00.2]);
To integrate a data set, use trapz:
integral $=$ trapz (x, y);

Summary

A. Express polynomial as arrays, polyval, conv
B. Find roots, create polynomial
C. Differentiate using polyder, integrate with polyint
D. Find zeros using fzero
E. Minimize functions within bounds (fminbnd).
F. Numerical integrate using trapz.

