MATLAB

Input/Output

Announcements

quiz: quiz22 due on Thurs 05/12
lab: lab on Fri 06/12
hw: hw12 on matlab wbsite due Wed 11/12

Roadmap

Objectives

A. Understand multiple returns from a function.
B. Understand data sources in MATLAB, particularly importdata, imread, and webread.
C. Distinguish functions and scripts.
D. Plot

Basic Review

Question

$$
\left(\begin{array}{lll}
1 & 2 & 2 \\
2 & 1 & 2 \\
2 & 2 & 1
\end{array}\right)
$$

How can we produce this array?
A ones $(3,3)-2$ *eye $(3,3)$
B ones $(3,3)+2$ *eye $(3,3)$
C 2*ones $(3,3)+$ eye $(3,3)$
D 2*ones $(3,3)$ - eye $(3,3)$

Question

$$
\left(\begin{array}{lll}
1 & 2 & 2 \\
2 & 1 & 2 \\
2 & 2 & 1
\end{array}\right)
$$

How can we produce this array?
A ones $(3,3)-2 *$ eye $(3,3)$
B ones $(3,3)+2$ *eye $(3,3)$
C 2*ones $(3,3)+$ eye $(3,3)$
D 2*ones $(3,3)$ - eye $(3,3)$ *

Other stuff

Most variables are created as a double (i.e., long float) Can type cast; To integer int8(x) or uint8(x); or 16 or 32 or 64
A lot of functions are not covered as they are similar to Python
So you need to search online or use doc or help

Arrays Redux

Basics

$$
\begin{aligned}
& \mathrm{a}=\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right] ; \text { \%row vector } \\
& \mathrm{b}=\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right] ; \text { \%column vector } \\
& \mathrm{A}=\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
\hline
\end{array}\right] ; \text { omatrix }
\end{aligned}
$$

Indexing arrays

We can index arrays with arrays.

$$
\begin{aligned}
& A=0: 10: 100 ; \\
& B=A([5,9,2,2]) ;
\end{aligned}
$$

Indexing arrays

We can index arrays with arrays.

$$
\begin{aligned}
& A=0: 10: 100 ; \\
& B=A([5,9,2,2]) ;
\end{aligned}
$$

Ans:
$A=0102030405060708090100$ $B=40801010$

Indexing arrays

We can index arrays with arrays.
$\mathrm{A}=0: 10: 100$;
B = A([5,9,2,2]);

Ans:
A = 0102030405060708090100 $B=40801010$

We can also slice.

$$
\begin{aligned}
& A=0: 10: 100 ; \\
& B=A(4: 7) ;
\end{aligned}
$$

Indexing arrays

In more dimensions:

$$
\begin{aligned}
& A=[1,2,3 ; 4,5,6 ; 7,8,9] ; \\
& B=A(1: 2,1: 2) ; \\
& C=A(:, 1: 2) ;
\end{aligned}
$$

Indexing arrays

In more dimensions:

$$
\begin{aligned}
& A=[1,2,3 ; 4,5,6 ; 7,8,9] ; \\
& B=A(1: 2,1: 2) ; \\
& C=A(:, 1: 2) ;
\end{aligned}
$$

ans $=$

B =

$C=$| 1 | 2 |
| :--- | :--- |
| 4 | 5 |
| | |
| 1 | 2 |
| 4 | 5 |
| 7 | 8 |

Indexing arrays

What are the differences in these? Why?

$$
\begin{aligned}
& A=[1,2,3 ; 4,5,6 ; 7,8,9] ; \\
& A(2) \\
& A(2,:) \\
& A(:, 2)
\end{aligned}
$$

Data Processing

Modeling

File Input

MATLAB encourages the storage of complicated variables, such as the results of numerical calculations, as 'mat' files. Saving data uses save:

File I/O - Save

MATLAB encourages the storage of complicated variables, such as the results of numerical calculations, as 'mat' files. Saving data uses save:


```
B = [ 3 4 5 ; 1 2 8 ];
save( 'test', 'A' ); %save only A into test.mat
Or
save( 'test'); %save everything in Workspace into
%test.mat
```


File I/O - Save

MATLAB encourages the storage of complicated variables, such as the results of numerical calculations, as 'mat' files. Saving data uses save:

```
A = [llllllllll}1\mp@code{1
B = [ 3 4 5 ; 1 2 8 ];
save( 'test', 'A' ); %save only A into test.mat
Or
save( 'test'); %save everything in Workspace into
%test.mat
```

Or
Use save test.txt A -ascii-append to append the value of A into a file test.txt

File I/O - Save

MATLAB encourages the storage of complicated variables, such as the results of numerical calculations, as 'mat' files. Saving data uses save:

or
save('test'); \%save everything in Workspace into
\%test.mat
Or
Use save test.txt A -ascii-append to append the value of A into a file test.txt
There is a slight difference between these methods. Please test in MATLAB

File I/O - Load

Use load to open:
$\mathrm{A}=$ load ('test', 'A');
load from text. mat variable A

File I/O - Load

Use load to open:
$\mathrm{A}=\operatorname{load}\left(\right.$ 'test' $\left.^{\prime} \mathrm{A}^{\prime}\right)$;
load from text. mat variable A

Use imread to open images (.jpg, .png or others):
A = imread('myPicture.jpg');

File I/O - Load

A more advanced tool: importdata

```
dataV = importdata( 'rainfall.txt' );
```


File I/O - Load

A more advanced tool: importdata dataV = importdata('rainfall.txt');

Import data in file into an array, here into dataV
Can also be used to process CSVs, image types, etc.

File I/O - Load

A more advanced tool: importdata dataV = importdata('rainfall.txt');

Import data in file into an array, here into dataV
Can also be used to process CSVs, image types, etc.
Old process using fopen, fscanf, fclose, fprintf also common.

Web Input

Web I/O

webread processes data gracefully.

```
url = 'http://zjui.intl.zju.edu.cn/sites/
    default/files/ueditor/1572/upload/
    image/20180917/1537152279766332.jpg'
data = webread( url );
image( data ); %display image from an array
```


Plotting

Plotting

plot works identically to plt.plot.
figure creates a new figure (window for plots).

```
x = 0:.1:2*pi
y = sin( x )
```

figure(100) \%give the figure a number
plot($\left.x, y,{ }^{\prime} o^{\prime}\right)$
title('sin(x)')
xlabel('x values')
ylabel('y values')

Plotting

plot works identically to plt.plot.
figure creates a new figure (window for plots).

```
x = 0:.1:2*pi
y = sin( x )
```

figure(100) \%give the figure a number
plot(x, y, \prime^{\prime})
title('sin(x)')
xlabel('x values')
ylabel('y values')
*MATLAB also has an good plot editor. \star

Plotting

Other plots to use:
A. fplot-plot an equation
B. plot3-3D plot
C. fcontour - plot contour
D. subplot-small plots within a plot

Aside on functions

You can define a single-line function locally using the syntax:

$$
\mathrm{f}=@(\mathrm{t}) \cos (3 * t) ;
$$

Plotting

```
x = @(t) cos( 3*t );
y = @(t) sin( 2*t );
fplot( x,y )
t = 0:pi/50:10*pi;
st = sin(t);
ct = cos(t);
plot3(st,ct,t)
```


Plotting

$\mathrm{f}=@(\mathrm{x}, \mathrm{y}) \sin (\mathrm{x})+\cos (\mathrm{y}) ;$
fcontour (f)
subplot $(2,1,1)$;
$\mathrm{x}=$ linspace $(0,10)$;
$\mathrm{y} 1=\sin (\mathrm{x})$;
plot(x,y1)
subplot $(2,1,2)$;
$\mathrm{y} 2=\sin \left(5{ }^{*} \mathrm{x}\right)$;
plot(x,y2)

Images

Images

Images can also be opened as files.

```
A = importdata( 'rabbit-bw.jpg' );
image( A );
```


Images

Images can also be opened as files.

```
A = importdata( 'rabbit-bw.jpg' );
image( A );
```

Black and white images are arrays of 0s and 1s.
Greyscale images are values from 0 and 1.
Color images are three-dimensional arrays. (Why?)
Variations exist depending on the underlying data.

Other stuff

Multiple returns

Functions can return several values.

Multiple returns

Functions can return several values.

```
function [ a,b ] = nonsense( x,y )
    a = x ^ 2;
    b = y ^ 3;
end
[ q r ] = nonsense( 3,4 );
```


Multi-dimension char arrray

But be careful-sizes cause surprises.

```
A = [ 'HELLO'; 'WORLD' ];
C = [ 'HELLO'; 'WORLD!' ];
A( 2,1 )
C( 2,1 )
```

What are A and C??

Multi-dimension string array

But be careful-sizes cause surprises.

```
A = [ "HELLO"; "WORLD" ];
C = [ "HELLO"; "WORLD!" ];
A( 2,1 )
C( 2,1 )
```

What are A and C ??

Summary

A. Like Python, load and read files
B. Like Matplotlib, plot different types of graphs
C. Like Python, functions with many outputs
D. Unlike Python, there are differences between ' and "

