

CS101 lec22

Input/Output

2019-12-04

quiz: quiz22 due on Thurs 05/12 lab: lab on Fri 06/12 hw: hw12 on matlab wbsite due Wed 11/12

Roadmap

- A. Understand multiple returns from a function.
- B. Understand data sources in MATLAB, particularly importdata, imread, and webread.
- C. Distinguish functions and scripts.
- D. Plot

Basic Review

Basic Review

$$\left(\begin{array}{rrrr} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{array}\right)$$

How can we produce this array?

D 2*ones(3,3) - eye(3,3)

$$\left(\begin{array}{rrrr} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{array}\right)$$

How can we produce this array?

Basic Review

Most variables are created as a *double* (i.e., *long float*) Can type cast; To integer int8(x) or uint8(x); or 16 or 32 or 64

A lot of functions are not covered as they are similar to Python

So you need to search online or use doc or help

Arrays Redux

Arrays Redux

Basics

We can index arrays with arrays.

```
A = 0:10:100;

B = A([5,9,2,2]);
```

We can index arrays with arrays.

```
A = 0:10:100;

B = A([5,9,2,2]);
```

Ans: A = 0 10 20 30 40 50 60 70 80 90 100 B = 40 80 10 10

We can index arrays with arrays.

```
A = 0:10:100;

B = A([5,9,2,2]);
```

```
Ans:
A = 0 10 20 30 40 50 60 70 80 90 100
B = 40 80 10 10
```

We can also slice.

```
A = 0:10:100;
B = A(4:7);
```

In more dimensions:

A = [1,2,3 ; 4,5,6 ; 7,8,9]; B = A(1:2,1:2); C = A(:,1:2);

In more dimensions:

A = [1,2,3 ; 4,5,6 ; 7,8,9]; B = A(1:2,1:2); C = A(:,1:2);

ans =

Arrays Redux

What are the differences in these? Why?

```
A = [ 1,2,3 ; 4,5,6 ; 7,8,9 ];
A( 2 )
A( 2,: )
A( :,2 )
```

Data Processing

Data Processing

Modeling

File Input

MATLAB encourages the storage of complicated variables, such as the results of numerical calculations, as 'mat' files.

Saving data uses save:

MATLAB encourages the storage of complicated variables, such as the results of numerical calculations, as 'mat' files. Saving data uses save:

MATLAB encourages the storage of complicated variables, such as the results of numerical calculations, as 'mat' files. Saving data uses save:

MATLAB encourages the storage of complicated variables, such as the results of numerical calculations, as 'mat' files. Saving data uses save:

```
A = [1 2 3; 4 5 6];
B = [345; 128];
save( 'test', 'A' ); %save only A into test.mat
or
save( 'test'); %save everything in Workspace into
                 %test.mat
or
Use save test.txt A -ascii -append to append the
value of A into a file test.txt
There is a slight difference between these methods. Please
test in MATLAB
```

Use load to open:

A = load('test', 'A');

load from text.mat variable A

Use load to open:

A = load('test', 'A');

load from text.mat variable A

Use imread to open images (.jpg, .png or others):

```
A = imread( 'myPicture.jpg' );
```

A more advanced tool: importdata

dataV = importdata('rainfall.txt');

A more advanced tool: importdata

```
dataV = importdata( 'rainfall.txt' );
```

Import data in file into an array, here into dataV Can also be used to process CSVs, image types, etc. A more advanced tool: importdata

```
dataV = importdata( 'rainfall.txt' );
```

Import data in file into an array, here into dataV Can also be used to process CSVs, image types, etc. Old process using fopen, fscanf, fclose, fprintf also common.

WebInput

webread processes data gracefully.

data = webread(url); image(data); %display image from an array

Plotting

plot works identically to plt.plot.

figure creates a new figure (window for plots).

```
x = 0:.1:2*pi
y = sin( x )
```

```
figure(100) %give the figure a number
plot( x,y,'o' )
title( 'sin(x)' )
xlabel( 'x values' )
ylabel( 'y values' )
```

Plotting

plot works identically to plt.plot.
figure creates a new figure (window for plots).

```
x = 0:.1:2*pi
y = sin( x )
```

```
figure(100) %give the figure a number
plot( x,y,'o' )
title( 'sin(x)' )
xlabel( 'x values' )
ylabel( 'y values' )
```

*MATLAB also has an good plot editor. *

Other plots to use:

- A. fplot plot an equation
- B. plot3 3D plot
- C. fcontour plot contour
- D. subplot small plots within a plot

You can define a single-line function locally using the syntax:

 $f = Q(t) \cos(3*t);$

Plotting

```
x = @(t) cos( 3*t );
y = @(t) sin( 2*t );
fplot( x,y )
```

```
t = 0:pi/50:10*pi;
st = sin(t);
ct = cos(t);
plot3(st,ct,t)
```

Plotting

```
f = @(x,y) sin( x ) + cos( y );
fcontour( f )
```

```
subplot(2,1,1);
x = linspace(0,10);
y1 = sin(x);
plot(x,y1)
```

```
subplot(2,1,2);
y2 = sin(5*x);
plot(x,y2)
```


Images can also be opened as files.

```
A = importdata( 'rabbit-bw.jpg' );
image( A );
```


Images can also be opened as files.

```
A = importdata( 'rabbit-bw.jpg' );
image( A );
```

Black and white images are arrays of 0s and 1s. Greyscale images are values from 0 and 1. Color images are three-dimensional arrays. (Why?) Variations exist depending on the underlying data.

Other stuff

Functions can return several values.

Functions can return several values.

Multi-dimension char arrray

But be careful—sizes cause surprises.

```
A = [ 'HELLO'; 'WORLD' ];
C = [ 'HELLO'; 'WORLD!' ];
```

```
A(2,1)
C(2,1)
```

What are A and C??

But be careful—sizes cause surprises.

```
A = [ "HELLO"; "WORLD" ];
C = [ "HELLO"; "WORLD!" ];
A( 2,1 )
C( 2,1 )
```

What are A and C??

- A. Like Python, load and read files
- B. Like Matplotlib, plot different types of graphs
- C. Like Python, functions with many outputs
- D. Unlike Python, there are differences between ' and "