Numerical Python

Heuristic Optimization
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Announcements

quiz: quiz17 due on Tues 19/11

lab: 1ab on Fri 22/11

hw: hw09 due this wed

Register for Matlab website

examO2 result? when do you want to know?



Roadmap
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Objectives

A. ldentify when a problem is a good candidate for a heuristic
solution.

B. Apply two heuristic optimization techniques (hill climbing,
random walk) to solve problems.



Clarification

import numpy as np
np.random.seed( 666 )
np.random.uniform( size=5 )

Do the 5 random numbers change from one run to another?
Remove np.random.seed( 666 )

Now, do the 5 random numbers change from one run to
another?



Optimization Redux

Optimization Redux



x = 712345’
y = "67890"

for a in itertools.product( x,y ):
print( 7 ’.join( a ) )

Which of the following is not printed?
Al 6’
B4 6’
C'’e6 7'
D’5 0’
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x = 712345’
y = "67890"

for a in itertools.product( x,y ):
print( 7 ’.join( a ) )

Which of the following is not printed?
Al 6’
B4 6’
C'’6 7" «
D’5 0’
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Optimization

Brute-force search of a password:

def check password( pwd ):
if pwd == ’'pas’:
return True
else:
return False

chars = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopgrstuvwxyz0123456789"
for pair in itertools.product( chars, repeat=3 ):
pair = '’ .join( pair )
if check password( pair ):
print ( pair )
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Optimization

Brute-force search of a password:

2 x n(alphabet) + n(digits) + n(special)
= 2% 26+ 10+ {24-32}
= {86-94}

per letter!

Optimization Redux



Brute-force search

Assume that a password can contain characters from the
alphabet (upper- and lower-case); digits; and a selection of
special characters (ampersand, dash): 86 characters.
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Brute-force search

Assume that a password can contain characters from the
alphabet (upper- and lower-case); digits; and a selection of
special characters (ampersand, dash): 86 characters.

Characters Search Space
1 86
2 862 = 7396
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Brute-force search

Assume that a password can contain characters from the
alphabet (upper- and lower-case); digits; and a selection of
special characters (ampersand, dash): 86 characters.

Characters Search Space
1 86
2 862 = 7396
3 86 = 636 056
4 86 = 54700816
5 86°=4704270176
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Brute-force search

Assume that a password can contain characters from the
alphabet (upper- and lower-case); digits; and a selection of
special characters (ampersand, dash): 86 characters.

Characters Search Space
86

862 = 7396

862 = 636 056

86* = 54700816
86° = 4704270176
8610 = 2.2 x 101
8620 = 4.9 x 1038
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Brute-force search

If Python can try a password attempt every 1 x 10~7 s, how
long does it take to crack a password of length n?

Characters Search Space Time
1 86 8.6x107%s
2 7396 T7.4x107%s
3 636056 6.4 x 1072s
4
5

54700816 5.4s
4704270176 470.4s
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Brute-force search

If Python can try a password attempt every 1 x 10~7 s, how
long does it take to crack a password of length n?

Characters Search Space Time
1 86 8.6x10Fs
7396 7.4x107*s
636056 6.4 x 1072s
54700816 5.4s
4704270176 470.4s
2.2 x 109 2.2 x10"2s =6.9 x 10*years
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Brute-force search

If Python can try a password attempt every 1 x 10~7 s, how
long does it take to crack a password of length n?

Characters Search Space Time

1 86 8.6x107%s
2 7396 T7.4x107%s
3 636056 6.4 x 1072s
4 54700816 5.4s
5
0
0

4704270176 470.4s
2.2 x 109 2.2 x10"2s =6.9 x 10*years

1
2 4.9 x10% 4.9x103s

Optimization Redux



Optimization

On vacation, you purchase a collection of n souvenirs of
varying weight and value. When it comes time to pack, you find
that your bag has a weight limit of 50 kg. What is the best set of
items to take on the flight?

We also used Brute-force method to solve...

Optimization Redux
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Heuristic optimization

Used when a best solution is impossible or impractical
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Heuristic optimization

Used when a best solution is impossible or impractical

Using a figure of merit, we can classify candidate
solutions by how good they are.
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Heuristic optimization

Used when a best solution is impossible or impractical
Using a figure of merit, we can classify candidate
solutions by how good they are.

Heuristic algorithms don’t guarantee the ‘best’ solution, but
are often adequate (and the only choice!)*.

* A functional program will be pretty long, you are not expected
to write one without any hints/helps

Heuristic Optimization 1/29



Heuristic optimization strategy

Hill-climbing
Random sampling
Random walk

Heuristic Optimization
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M1: Hill-climbing algorithm

Strategy: Always selecting the "next best” neighbour which
improves on present one.
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M1: Hill-climbing algorithm

Strategy: Always selecting the "next best” neighbour which
improves on present one.

Analogy: Trying to find the highest hill by only taking a step
uphill from where you are.
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M1: Hill-climbing algorithm

Strategy: Always selecting the "next best” neighbour which
improves on present one.

Analogy: Trying to find the highest hill by only taking a step
uphill from where you are.

Pitfall: Finding a local optimum instead of the global
optimum.
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M1: Hill-climbing algorithm

>

Set up a figure of merit, f. Something that can be used to
compare.

Select a starting guess, xo.
Change a feature of the guess.
If this improves, keep it and cycle.

moOOoOw

If no improvement is possible, terminate.
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Example: One variable

f(x) = 100 — (x — 5)*

100 4

50

50

—100

-10.0

Heuristic Optimization

=15

-5.0 =25 0.0 2.5 5.0 75 10.0

x € {—10,+10},

# Hill-climbing algorithm begins here. #as#t#ssH######FFIR SRR IRIRIRS
X = np.linspace( -10,10,1601 ) # set up a grid in x

x=-8

1=-0.1

r= 0.1

i=0
num_steps = 10000
best_x = x
best_f = f( best_x )
last_x = np.nan
last_f = np.nan
steps = np.empty( ( num_steps+l,2 ) )
while ( not np.isclose( last_f,best_f,rtol=le-5 ) ) and ( i < num_steps ):
# Check the neighbors, accept the best improvement.
last_x = best_x
last_f = best_f
trial x_1 = best_x + 1
trial_x_r = best_x + r
if F( trial_x_1 ) > best_f:
best_x = trial_x_1
best_f = f( best_x )
elif f( trial x_r ) > best_f:
best_x
best_f
else:

trial_x_r
£( best_x )

either the absolute best scenario has been found,
or the step size is too large

= 0.5%1

= 0.5t

R
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Example: One variable

100 1

=100 A
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Example: Two-variable

1

fix,y) = N (

cos* x — 2 cos® xsin? y + sin* y)

x € {+1,+5},y € {+1,45}
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Example: Two-variable code

Full code on RELATE website:

# Hill climbing algorithm begins here. #####4#4#4#4
X = np.linspace( 1,5,401 ) # set up a grid in x

Y = np.linspace( 1,5,401 ) # set up a grid in vy

xy = np.random.randint ( 401,size=(2,) )

u = np.array( ( 0,-1 ) ) # "up”
d = np.array( ( 0,+1 ) ) # ”down”
1 = np.array( ( =-1,0 ) ) # ”left”
r = np.array( ( +1,0 ) ) # "right”
num steps = 500
best xy = xy
best £ = £( xy[ 0 J,xy[ 1 1)
steps = np.empty( ( num steps,3 ) )
Heuristic Optimization 8/29



Example: Two-variable code

for 1 in range( num steps ):

# Try a step in each direction until

no improvement is possible.

trial xy = xy.copy()

# cycle through directions to step

step dir = ( u,d,l,r )[ 1 % 4 ]

trial xy ( Xy + step dir ) % X.shape[ 0 ]
xt = X[ trial xy[ 0 ] ]
yt = Y[ trial xy[ 1 ] ]

if £( xt, yt )>best f:
# If the solution improves, accept it.
best £ = £( xt, yt )
best xy = trial xy.copy ()
xy = trial xy.copy()
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Example: Two-variable

Observe the red dot on the hill top. A "good enough” solution

that is local maxima.
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M2: Random sampling

Strategy: Choosing at random a candidate solution
(sometimes within a constrained space).
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M2: Random sampling

Strategy: Choosing at random a candidate solution
(sometimes within a constrained space).

Analogy: Picking random heights in the region of a hill,
accepting the tallest as the highest.
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M2: Random sampling

Strategy: Choosing at random a candidate solution
(sometimes within a constrained space).

Analogy: Picking random heights in the region of a hill,
accepting the tallest as the highest.

Pitfall: Without good constraints, missing the optimum
value.
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M3: Random walk

Also uses random numbers, but:

Strategy: Tweaking the current candidate solution at
random, and possibly rejecting the solution if worse.
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M3: Random walk

Also uses random numbers, but:
Strategy: Tweaking the current candidate solution at
random, and possibly rejecting the solution if worse.

Analogy: Choose random steps near a hill, but maybe not
take the step if it's worse.
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M3: Random walk

Also uses random numbers, but:
Strategy: Tweaking the current candidate solution at
random, and possibly rejecting the solution if worse.

Analogy: Choose random steps near a hill, but maybe not
take the step if it's worse.

Pitfall: Converging slowly, can still miss best candidate
solution.
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M3: Random walk

Also uses random numbers, but:

Strategy: Tweaking the current candidate solution at
random, and possibly rejecting the solution if worse.

Analogy: Choose random steps near a hill, but maybe not
take the step if it's worse.

Pitfall: Converging slowly, can still miss best candidate
solution. BUT: has a way to avoid getting stuck in a local
optima.

Heuristic Optimization 12/29



M3: Random walk algorithm

Set up a figure of merit f.

Select a starting guess xo.

Change a random feature of the guess.

If this improves, keep it and cycle.

If this does not improve, sometimes keep it anyway.
When number of trials has been reached, terminate.

mmO O W >
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M3: Random walk

Full code on RELATE website:

# Random walk algorithm begins here.

FHEFFHAHHFAA RS

X = np.linspace( 1,5,401 ) # set up a grid in x
Y = np.linspace( 1,5,401 ) # set up a grid in vy

xy = np.random.randint ( 401,size=(2,)

u = np.array( ( 0,-1 ) ) # "up”

d = np.array( ( 0,+1 ) ) # ”down”
1 = np.array( ( -1,0 ) ) # "left”
r = np.array( ( +1,0 ) ) # "right”

num steps = 10000

best xy = xy

best £ = £( xy[ 0 ],xy[ 1 ] )
(

steps = np.empty( ( num steps,3 ) )

Heuristic Optimization
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M3: Random walk

for 1 in range( num steps ):
# Take a random step, 25% chance in each directio
trial xy = xy.copy()

chance = np.random.uniformf()
if chance < 0.25:

trial xy = ( xy + u ) % Y.shapel[ 0 ]
elif chance < 0.5:

trial xy = ( xy + d ) % Y.shapel[ 0 ]
elif chance < 0.75:

trial xy = ( xy + 1 ) % X.shape[ 0 ]
else:

trial xy = ( xy + r ) % X.shape[ 0 ]
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M3: Random walk

xt X[ trial xy[ O ] ]
yt = Y[ trial xy[ 1 ] ]
if £( xt, yt ) > best f:
# If the solution improves, accept it.
best £ = £( xt, yt )
best xy = trial xy.copy()
xy = trial xy.copy ()
else:
# If the solution does not improve,
# sometimes accept it.
chance = np.random.uniform()
if chance < 0.25:
xy = trial xy.copy()
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M3: Random walk
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Heuristic Optimization

When we use heuristic optimization methods, we are ok
with a "good enough” solution

If we want to crack a password, can we have a "good
enough” solution?

So to use heuristic optimization, we require:

A. A problem with relative solution assessment
B. An algorithm to assess solutions
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Our different optimization strategies, so far:

A. Brute-force (last lecture)

B. Hill-climbing
Select heaviest item, then add next heaviest, etc.
Select most valuable item, then add next most
valuable item, etc.

C. Random sampling

D. Random walk: sample randomly, then iteratively allow

changes based on probability
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Setup - Your LV bags

import numpy as np
import matplotlib.pyplot as plt
import itertools

n = 10
#Num of bags
items = list( range( n ) )
#Weight of each bag
weights = np.random.uniform( size=(n,) ) * 50
#Value of each bag
values = np.random.uniform( size=(n,) ) * 100
Heuristic Optimization 20/29



Setup -How you decide

def f( wts, wvals ):
total weight = 0
total value = 0

for i in range( len( wts ) ):
# Add weight
total weight += wts[ 1 ]
# Add value
total value += vals[ 1 ]

if total weight >= 50:
return 0

else:
return total value

Heuristic Optimization 21/29



Brute-force search

import itertools

max value = 0.0
max set = None
for i in range(n):
for set in itertools.combinations( items,i ):
wts = []
vals = []
for item in set:
wts.append( weights[ item ] )
vals.append( values|[ item ] )
value = f£( wts,vals )
if value > max value:
max value = value
max set = set

Heuristic Optimization 22/29



Hill-climbing search

max wt = 50.0

wts orig = wts[ : ]
vals orig = vals[ : ]

best vals [ ]

best wts [ ]

best vals.append( max( vals ) )

best wts.append( wts[ vals.index( max( vals ) ) ] )
wts.remove ( wts|[ vals.index( max( vals ) ) 1 )

vals.remove ( max( vals ) )

Heuristic Optimization 23/29



Hill-climbing search

while sum(best wts) + wts[vals.index (max(vals))]
< max wt:
best vals.append( max( vals ) )
best wts.append( wts[ vals.index( max( vals ) )
wts.remove ( wts[ vals.index( max( vals ) ) 1 )
vals.remove ( max( vals ) )
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Random walk - structure

# try a configuration at random
# alter it at random with small likelihood
# of getting worse
for t in range( 1000 ):
# two possible moves: adding or removing
if f£( next wts,next vals ) >
f( trial wts,trial vals ):
# if improvement, accept the change
else:
# if no improvement, *maybe* accept the change

# 1f all-time best, track it

See full code in random-walk.py in lec17 in RELATE
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Comparing Results
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Comparing results

arrays don’t play nicely with comparisons:
one = np.ones( ( 5, ) )
if one ==

print ( ’setup correct’ )
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Comparing results

arrays don’t play nicely with comparisons:
one = np.ones( ( 5, ) )
if one ==
print ( ’setup correct’ )
ValueError: The truth value of an array with more than one
element is ambiguous.
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Comparing results

arrays don’t play nicely with comparisons:
one = np.ones( ( 5, ) )
if one ==
print ( ’setup correct’ )
ValueError: The truth value of an array with more than one
element is ambiguous.

Which element is compared? It's ambiguous.
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Comparing results

arrays have the built-in methods any and a11:

one = np.ones( ( 5, ) )

if ( one == y.all():
print( "setup is all ones’ )
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Comparing results

arrays have the built-in methods any and a11:

one = np.ones( ( 5, ) )

if ( one == y.all():
print( "setup is all ones’ )

domain = np.linspace( 0,10,11 )
if ( domain == ) .any () :
print ( ’'setup contains one’ )
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A. Heuristic optimization - when optimal is not practical but
"good enough” is good enough

. Hill-climbing method
Random sampling and random walk

D. Need way to quantify to say it is "good enough” - figure of
merit or cost function

E. numpy comparing elements of an array: .all( ) or
.any ()

O w
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