
NumericalPython
CS101 lec17

Heuristic Optimization

2019-11-18

Announcements

quiz: quiz17 due on Tues 19/11
lab: lab on Fri 22/11
hw: hw09 due this wed
Register for Matlab website
exam02 result? when do you want to know?

Roadmap

Objectives

A. Identify when a problem is a good candidate for a heuristic
solution.

B. Apply two heuristic optimization techniques (hill climbing,
random walk) to solve problems.

Clarification

import numpy as np
np.random.seed(666)
np.random.uniform(size=5)

Do the 5 random numbers change from one run to another?
Remove np.random.seed(666)
Now, do the 5 random numbers change from one run to
another?

Optimization Redux

OptimizationRedux

Question

Optimization Redux

x = ’12345’
y = ’67890’

for a in itertools.product(x,y):
print(’ ’.join(a))

Which of the following is not printed?

A ’1 6’
B ’4 6’
C ’6 7’
D ’5 0’

Question

Optimization Redux

x = ’12345’
y = ’67890’

for a in itertools.product(x,y):
print(’ ’.join(a))

Which of the following is not printed?

A ’1 6’
B ’4 6’
C ’6 7’ ⋆

D ’5 0’

Optimization

Optimization Redux

Brute-force search of a password:

def check_password(pwd):
if pwd == ’pas’:

return True
else:

return False

chars = ’ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz0123456789’

for pair in itertools.product(chars, repeat=3):
pair = ’’.join(pair)
if check_password(pair):

print(pair)

Optimization

Optimization Redux

Brute-force search of a password:

2× n(alphabet) + n(digits) + n(special)
= 2× 26 + 10 + {24–32}
= {86–94}

per letter!

Brute-force search

Optimization Redux

Assume that a password can contain characters from the
alphabet (upper- and lower-case); digits; and a selection of
special characters (ampersand, dash): 86 characters.

Characters Search Space
1 86
2 862 = 7396
3 863 = 636 056
4 864 = 54 700 816
5 865 = 4704 270 176

10 8610 = 2.2× 1019

20 8620 = 4.9× 1038

Brute-force search

Optimization Redux

Assume that a password can contain characters from the
alphabet (upper- and lower-case); digits; and a selection of
special characters (ampersand, dash): 86 characters.

Characters Search Space
1 86
2 862 = 7396

3 863 = 636 056
4 864 = 54 700 816
5 865 = 4704 270 176

10 8610 = 2.2× 1019

20 8620 = 4.9× 1038

Brute-force search

Optimization Redux

Assume that a password can contain characters from the
alphabet (upper- and lower-case); digits; and a selection of
special characters (ampersand, dash): 86 characters.

Characters Search Space
1 86
2 862 = 7396
3 863 = 636 056
4 864 = 54 700 816
5 865 = 4704 270 176

10 8610 = 2.2× 1019

20 8620 = 4.9× 1038

Brute-force search

Optimization Redux

Assume that a password can contain characters from the
alphabet (upper- and lower-case); digits; and a selection of
special characters (ampersand, dash): 86 characters.

Characters Search Space
1 86
2 862 = 7396
3 863 = 636 056
4 864 = 54 700 816
5 865 = 4704 270 176

10 8610 = 2.2× 1019

20 8620 = 4.9× 1038

Brute-force search

Optimization Redux

If Python can try a password attempt every 1× 10−7 s, how
long does it take to crack a password of length n?

Characters Search Space Time
1 86 8.6× 10−6 s
2 7 396 7.4× 10−4 s
3 636 056 6.4× 10−2 s
4 54 700 816 5.4 s
5 4 704 270 176 470.4 s

10 2.2× 1019 2.2× 1012 s = 6.9× 104 years
20 4.9× 1038 4.9× 1031 s

Brute-force search

Optimization Redux

If Python can try a password attempt every 1× 10−7 s, how
long does it take to crack a password of length n?

Characters Search Space Time
1 86 8.6× 10−6 s
2 7 396 7.4× 10−4 s
3 636 056 6.4× 10−2 s
4 54 700 816 5.4 s
5 4 704 270 176 470.4 s

10 2.2× 1019 2.2× 1012 s = 6.9× 104 years

20 4.9× 1038 4.9× 1031 s

Brute-force search

Optimization Redux

If Python can try a password attempt every 1× 10−7 s, how
long does it take to crack a password of length n?

Characters Search Space Time
1 86 8.6× 10−6 s
2 7 396 7.4× 10−4 s
3 636 056 6.4× 10−2 s
4 54 700 816 5.4 s
5 4 704 270 176 470.4 s

10 2.2× 1019 2.2× 1012 s = 6.9× 104 years
20 4.9× 1038 4.9× 1031 s

Optimization

Optimization Redux

On vacation, you purchase a collection of n souvenirs of
varying weight and value. When it comes time to pack, you find
that your bag has a weight limit of 50 kg. What is the best set of
items to take on the flight?

We also used Brute-force method to solve...

Heuristic Optimization

HeuristicOptimization

Heuristic optimization

Heuristic Optimization 1/29

Used when a best solution is impossible or impractical

Using a figure of merit, we can classify candidate
solutions by how good they are.
Heuristic algorithms don’t guarantee the ‘best’ solution, but
are often adequate (and the only choice!)*.

* A functional program will be pretty long, you are not expected
to write one without any hints/helps

Heuristic optimization

Heuristic Optimization 1/29

Used when a best solution is impossible or impractical
Using a figure of merit, we can classify candidate
solutions by how good they are.

Heuristic algorithms don’t guarantee the ‘best’ solution, but
are often adequate (and the only choice!)*.

* A functional program will be pretty long, you are not expected
to write one without any hints/helps

Heuristic optimization

Heuristic Optimization 1/29

Used when a best solution is impossible or impractical
Using a figure of merit, we can classify candidate
solutions by how good they are.
Heuristic algorithms don’t guarantee the ‘best’ solution, but
are often adequate (and the only choice!)*.

* A functional program will be pretty long, you are not expected
to write one without any hints/helps

Heuristic optimization strategy

Heuristic Optimization 2/29

Hill-climbing
Random sampling
Random walk

M1: Hill-climbing algorithm

Heuristic Optimization 3/29

Strategy: Always selecting the ”next best” neighbour which
improves on present one.

Analogy: Trying to find the highest hill by only taking a step
uphill from where you are.
Pitfall: Finding a local optimum instead of the global
optimum.

M1: Hill-climbing algorithm

Heuristic Optimization 3/29

Strategy: Always selecting the ”next best” neighbour which
improves on present one.
Analogy: Trying to find the highest hill by only taking a step
uphill from where you are.

Pitfall: Finding a local optimum instead of the global
optimum.

M1: Hill-climbing algorithm

Heuristic Optimization 3/29

Strategy: Always selecting the ”next best” neighbour which
improves on present one.
Analogy: Trying to find the highest hill by only taking a step
uphill from where you are.
Pitfall: Finding a local optimum instead of the global
optimum.

M1: Hill-climbing algorithm

Heuristic Optimization 4/29

A. Set up a figure of merit, f. Something that can be used to
compare.

B. Select a starting guess, x0.
C. Change a feature of the guess.
D. If this improves, keep it and cycle.
E. If no improvement is possible, terminate.

Example: One variable

Heuristic Optimization 5/29

f(x) = 100− (x− 5)2 x ∈ {−10,+10},

Example: One variable

Heuristic Optimization 6/29

Result:

Example: Two-variable

Heuristic Optimization 7/29

f(x, y) =
1√

2x2 + 2y2
(
cos4 x− 2 cos2 x sin2 y+ sin4 y

)
x ∈ {+1,+5}, y ∈ {+1,+5}

Example: Two-variable code

Heuristic Optimization 8/29

Full code on RELATE website:

Hill climbing algorithm begins here.
X = np.linspace(1,5,401) # set up a grid in x
Y = np.linspace(1,5,401) # set up a grid in y
xy = np.random.randint(401,size=(2,))
u = np.array((0,-1)) # ”up”
d = np.array((0,+1)) # ”down”
l = np.array((-1,0)) # ”left”
r = np.array((+1,0)) # ”right”

num_steps = 500
best_xy = xy
best_f = f(xy[0],xy[1])
steps = np.empty((num_steps,3))

Example: Two-variable code

Heuristic Optimization 9/29

for i in range(num_steps):
Try a step in each direction until

no improvement is possible.
trial_xy = xy.copy()
cycle through directions to step
step_dir = (u,d,l,r)[i % 4]
trial_xy = (xy + step_dir) % X.shape[0]
xt = X[trial_xy[0]]
yt = Y[trial_xy[1]]

if f(xt, yt)>best_f:
If the solution improves, accept it.
best_f = f(xt, yt)
best_xy = trial_xy.copy()
xy = trial_xy.copy()

Example: Two-variable

Heuristic Optimization 10/29

Observe the red dot on the hill top. A ”good enough” solution
that is local maxima.

M2: Randomsampling

Heuristic Optimization 11/29

Strategy: Choosing at random a candidate solution
(sometimes within a constrained space).

Analogy: Picking random heights in the region of a hill,
accepting the tallest as the highest.
Pitfall: Without good constraints, missing the optimum
value.

M2: Randomsampling

Heuristic Optimization 11/29

Strategy: Choosing at random a candidate solution
(sometimes within a constrained space).
Analogy: Picking random heights in the region of a hill,
accepting the tallest as the highest.

Pitfall: Without good constraints, missing the optimum
value.

M2: Randomsampling

Heuristic Optimization 11/29

Strategy: Choosing at random a candidate solution
(sometimes within a constrained space).
Analogy: Picking random heights in the region of a hill,
accepting the tallest as the highest.
Pitfall: Without good constraints, missing the optimum
value.

M3: Randomwalk

Heuristic Optimization 12/29

Also uses random numbers, but:

Strategy: Tweaking the current candidate solution at
random, and possibly rejecting the solution if worse.

Analogy: Choose random steps near a hill, but maybe not
take the step if it’s worse.
Pitfall: Converging slowly, can still miss best candidate
solution. BUT: has a way to avoid getting stuck in a local
optima.

M3: Randomwalk

Heuristic Optimization 12/29

Also uses random numbers, but:

Strategy: Tweaking the current candidate solution at
random, and possibly rejecting the solution if worse.
Analogy: Choose random steps near a hill, but maybe not
take the step if it’s worse.

Pitfall: Converging slowly, can still miss best candidate
solution. BUT: has a way to avoid getting stuck in a local
optima.

M3: Randomwalk

Heuristic Optimization 12/29

Also uses random numbers, but:

Strategy: Tweaking the current candidate solution at
random, and possibly rejecting the solution if worse.
Analogy: Choose random steps near a hill, but maybe not
take the step if it’s worse.
Pitfall: Converging slowly, can still miss best candidate
solution.

BUT: has a way to avoid getting stuck in a local
optima.

M3: Randomwalk

Heuristic Optimization 12/29

Also uses random numbers, but:

Strategy: Tweaking the current candidate solution at
random, and possibly rejecting the solution if worse.
Analogy: Choose random steps near a hill, but maybe not
take the step if it’s worse.
Pitfall: Converging slowly, can still miss best candidate
solution. BUT: has a way to avoid getting stuck in a local
optima.

M3: Randomwalk algorithm

Heuristic Optimization 13/29

A. Set up a figure of merit f.
B. Select a starting guess x0.
C. Change a random feature of the guess.
D. If this improves, keep it and cycle.
E. If this does not improve, sometimes keep it anyway.
F. When number of trials has been reached, terminate.

M3: Randomwalk

Heuristic Optimization 14/29

Full code on RELATE website:

Random walk algorithm begins here.
X = np.linspace(1,5,401) # set up a grid in x
Y = np.linspace(1,5,401) # set up a grid in y
xy = np.random.randint(401,size=(2,))
u = np.array((0,-1)) # ”up”
d = np.array((0,+1)) # ”down”
l = np.array((-1,0)) # ”left”
r = np.array((+1,0)) # ”right”

num_steps = 10000
best_xy = xy
best_f = f(xy[0],xy[1])
steps = np.empty((num_steps,3))

M3: Randomwalk

Heuristic Optimization 15/29

for i in range(num_steps):
Take a random step, 25% chance in each direction.
trial_xy = xy.copy()
chance = np.random.uniform()
if chance < 0.25:
trial_xy = (xy + u) % Y.shape[0]

elif chance < 0.5:
trial_xy = (xy + d) % Y.shape[0]

elif chance < 0.75:
trial_xy = (xy + l) % X.shape[0]

else:
trial_xy = (xy + r) % X.shape[0]

M3: Randomwalk

Heuristic Optimization 16/29

xt = X[trial_xy[0]]
yt = Y[trial_xy[1]]
if f(xt, yt) > best_f:
If the solution improves, accept it.
best_f = f(xt, yt)
best_xy = trial_xy.copy()
xy = trial_xy.copy()

else:
If the solution does not improve,
sometimes accept it.
chance = np.random.uniform()
if chance < 0.25:

xy = trial_xy.copy()

M3: Randomwalk

Heuristic Optimization 17/29

HeuristicOptimization

Heuristic Optimization 18/29

When we use heuristic optimization methods, we are ok
with a ”good enough” solution
If we want to crack a password, can we have a ”good
enough” solution?
So to use heuristic optimization, we require:
A. A problem with relative solution assessment
B. An algorithm to assess solutions

Example

Heuristic Optimization 19/29

Our different optimization strategies, so far:
A. Brute-force (last lecture)
B. Hill-climbing

Select heaviest item, then add next heaviest, etc.
Select most valuable item, then add next most
valuable item, etc.

C. Random sampling
D. Random walk: sample randomly, then iteratively allow

changes based on probability

Setup - Your LVbags

Heuristic Optimization 20/29

import numpy as np
import matplotlib.pyplot as plt
import itertools

n = 10
#Num of bags
items = list(range(n))
#Weight of each bag
weights = np.random.uniform(size=(n,)) * 50
#Value of each bag
values = np.random.uniform(size=(n,)) * 100

Setup -Howyoudecide

Heuristic Optimization 21/29

def f(wts, vals):
total_weight = 0
total_value = 0

for i in range(len(wts)):
Add weight
total_weight += wts[i]
Add value
total_value += vals[i]

if total_weight >= 50:
return 0

else:
return total_value

Brute-force search

Heuristic Optimization 22/29

import itertools

max_value = 0.0
max_set = None
for i in range(n):

for set in itertools.combinations(items,i):
wts = []
vals = []
for item in set:

wts.append(weights[item])
vals.append(values[item])

value = f(wts,vals)
if value > max_value:

max_value = value
max_set = set

Hill-climbing search

Heuristic Optimization 23/29

max_wt = 50.0

wts_orig = wts[:]
vals_orig = vals[:]

best_vals = []
best_wts = []
best_vals.append(max(vals))
best_wts.append(wts[vals.index(max(vals))])
wts.remove(wts[vals.index(max(vals))])
vals.remove(max(vals))

Hill-climbing search

Heuristic Optimization 24/29

while sum(best_wts) + wts[vals.index(max(vals))]
< max_wt:

best_vals.append(max(vals))
best_wts.append(wts[vals.index(max(vals))])
wts.remove(wts[vals.index(max(vals))])
vals.remove(max(vals))

Randomwalk - structure

Heuristic Optimization 25/29

try a configuration at random
alter it at random with small likelihood
of getting worse
for t in range(1000):
two possible moves: adding or removing
if f(next_wts,next_vals) >

f(trial_wts,trial_vals):
if improvement, accept the change
...............

else:
if no improvement, *maybe* accept the change
...............

if all-time best, track it
...............

See full code in random-walk.py in lec17 in RELATE

Comparing Results 26/29

ComparingResults

Comparing results

Comparing Results 27/29

arrays don’t play nicely with comparisons:
one = np.ones((5,))
if one == 1:

print(’setup correct’)

ValueError: The truth value of an array with more than one
element is ambiguous.
Which element is compared? It’s ambiguous.

Comparing results

Comparing Results 27/29

arrays don’t play nicely with comparisons:
one = np.ones((5,))
if one == 1:

print(’setup correct’)
ValueError: The truth value of an array with more than one
element is ambiguous.

Which element is compared? It’s ambiguous.

Comparing results

Comparing Results 27/29

arrays don’t play nicely with comparisons:
one = np.ones((5,))
if one == 1:

print(’setup correct’)
ValueError: The truth value of an array with more than one
element is ambiguous.
Which element is compared? It’s ambiguous.

Comparing results

Comparing Results 28/29

arrays have the built-in methods any and all:
one = np.ones((5,))

if (one == 1).all():
print(’setup is all ones’)

domain = np.linspace(0,10,11)
if (domain == 1).any():

print(’setup contains one’)

Comparing results

Comparing Results 28/29

arrays have the built-in methods any and all:
one = np.ones((5,))

if (one == 1).all():
print(’setup is all ones’)

domain = np.linspace(0,10,11)
if (domain == 1).any():

print(’setup contains one’)

Summary

Comparing Results 29/29

A. Heuristic optimization - when optimal is not practical but
”good enough” is good enough

B. Hill-climbing method
C. Random sampling and random walk
D. Need way to quantify to say it is ”good enough” - figure of

merit or cost function
E. numpy comparing elements of an array: .all() or

.any()

	Optimization Redux
	Heuristic Optimization
	Comparing Results

