Numerical Python

Heuristic Optimization

2019-11-18

Announcements

quiz: quiz17 due on Tues 19/11

lab: 1ab on Fri 22/11

hw: hw09 due this wed

Register for Matlab website

examO2 result? when do you want to know?

Roadmap

Week 1 (9/9)

Week 2 (16/9)

9/10 12/10
L8
PY-
Dict
Week 9 (4/11) Week 10 (11/11)

L14
PY - L16
De- Brute
bug

Week 13 (2/12) Week 14 (9/12)
L22 L23 L24
ML - ML - ML-
Intro 10 Poly

Week 17 (30/12)

Week 3 (23/9) 30/9

000X

Week 7 (21/10) Week 8 (28/10)

L13
PY-
Rand

Week 11 (18/11) Week 12 (25/11)

L18
PY-
Mod

Week 15 (16/12) Week 16 (23/12)
L25 L26
ML - ML-
Stats Fit

Objectives

A. ldentify when a problem is a good candidate for a heuristic
solution.

B. Apply two heuristic optimization techniques (hill climbing,
random walk) to solve problems.

Clarification

import numpy as np
np.random.seed(666)
np.random.uniform(size=5)

Do the 5 random numbers change from one run to another?
Remove np.random.seed(666)

Now, do the 5 random numbers change from one run to
another?

Optimization Redux

Optimization Redux

x = 712345’
y = "67890"

for a in itertools.product(x,y):
print(7 ’.join(a))

Which of the following is not printed?
Al 6’
B4 6’
C'’e6 7'
D’5 0’

Optimization Redux

x = 712345’
y = "67890"

for a in itertools.product(x,y):
print(7 ’.join(a))

Which of the following is not printed?
Al 6’
B4 6’
C'’6 7" «
D’5 0’

Optimization Redux

Optimization

Brute-force search of a password:

def check password(pwd):
if pwd == ’'pas’:
return True
else:
return False

chars = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopgrstuvwxyz0123456789"
for pair in itertools.product(chars, repeat=3):
pair = '’ .join(pair)
if check password(pair):
print (pair)

Optimization Redux

Optimization

Brute-force search of a password:

2 x n(alphabet) + n(digits) + n(special)
= 2% 26+ 10+ {24-32}
= {86-94}

per letter!

Optimization Redux

Brute-force search

Assume that a password can contain characters from the
alphabet (upper- and lower-case); digits; and a selection of
special characters (ampersand, dash): 86 characters.

Optimization Redux

Brute-force search

Assume that a password can contain characters from the
alphabet (upper- and lower-case); digits; and a selection of
special characters (ampersand, dash): 86 characters.

Characters Search Space
1 86
2 862 = 7396

Optimization Redux

Brute-force search

Assume that a password can contain characters from the
alphabet (upper- and lower-case); digits; and a selection of
special characters (ampersand, dash): 86 characters.

Characters Search Space
1 86
2 862 = 7396
3 86 = 636 056
4 86 = 54700816
5 86°=4704270176

Optimization Redux

Brute-force search

Assume that a password can contain characters from the
alphabet (upper- and lower-case); digits; and a selection of
special characters (ampersand, dash): 86 characters.

Characters Search Space
86

862 = 7396

862 = 636 056

86* = 54700816
86° = 4704270176
8610 = 2.2 x 101
8620 = 4.9 x 1038

QOO WN -~

N —

Optimization Redux

Brute-force search

If Python can try a password attempt every 1 x 10~7 s, how
long does it take to crack a password of length n?

Characters Search Space Time
1 86 8.6x107%s
2 7396 T7.4x107%s
3 636056 6.4 x 1072s
4
5

54700816 5.4s
4704270176 470.4s

Optimization Redux

Brute-force search

If Python can try a password attempt every 1 x 10~7 s, how
long does it take to crack a password of length n?

Characters Search Space Time
1 86 8.6x10Fs
7396 7.4x107*s
636056 6.4 x 1072s
54700816 5.4s
4704270176 470.4s
2.2 x 109 2.2 x10"2s =6.9 x 10*years

OO~ WN

Optimization Redux

Brute-force search

If Python can try a password attempt every 1 x 10~7 s, how
long does it take to crack a password of length n?

Characters Search Space Time

1 86 8.6x107%s
2 7396 T7.4x107%s
3 636056 6.4 x 1072s
4 54700816 5.4s
5
0
0

4704270176 470.4s
2.2 x 109 2.2 x10"2s =6.9 x 10*years

1
2 4.9 x10% 4.9x103s

Optimization Redux

Optimization

On vacation, you purchase a collection of n souvenirs of
varying weight and value. When it comes time to pack, you find
that your bag has a weight limit of 50 kg. What is the best set of
items to take on the flight?

We also used Brute-force method to solve...

Optimization Redux

Heuristic Optimization

Heuristic optimization

Used when a best solution is impossible or impractical

Heuristic Optimization 1/29

Heuristic optimization

Used when a best solution is impossible or impractical

Using a figure of merit, we can classify candidate
solutions by how good they are.

Heuristic Optimization 1/29

Heuristic optimization

Used when a best solution is impossible or impractical
Using a figure of merit, we can classify candidate
solutions by how good they are.

Heuristic algorithms don’t guarantee the ‘best’ solution, but
are often adequate (and the only choice!)*.

* A functional program will be pretty long, you are not expected
to write one without any hints/helps

Heuristic Optimization 1/29

Heuristic optimization strategy

Hill-climbing
Random sampling
Random walk

Heuristic Optimization

2/29

M1: Hill-climbing algorithm

Strategy: Always selecting the "next best” neighbour which
improves on present one.

Heuristic Optimization 3/29

M1: Hill-climbing algorithm

Strategy: Always selecting the "next best” neighbour which
improves on present one.

Analogy: Trying to find the highest hill by only taking a step
uphill from where you are.

Heuristic Optimization 3/29

M1: Hill-climbing algorithm

Strategy: Always selecting the "next best” neighbour which
improves on present one.

Analogy: Trying to find the highest hill by only taking a step
uphill from where you are.

Pitfall: Finding a local optimum instead of the global
optimum.

Heuristic Optimization 3/29

M1: Hill-climbing algorithm

>

Set up a figure of merit, f. Something that can be used to
compare.

Select a starting guess, xo.
Change a feature of the guess.
If this improves, keep it and cycle.

moOOoOw

If no improvement is possible, terminate.

Heuristic Optimization 4/29

Example: One variable

f(x) = 100 — (x — 5)*

100 4

50

50

—100

-10.0

Heuristic Optimization

=15

-5.0 =25 0.0 2.5 5.0 75 10.0

x € {—10,+10},

Hill-climbing algorithm begins here. #as#t#ssH######FFIR SRR IRIRIRS
X = np.linspace(-10,10,1601) # set up a grid in x

x=-8

1=-0.1

r= 0.1

i=0
num_steps = 10000
best_x = x
best_f = f(best_x)
last_x = np.nan
last_f = np.nan
steps = np.empty((num_steps+l,2))
while (not np.isclose(last_f,best_f,rtol=le-5)) and (i < num_steps):
Check the neighbors, accept the best improvement.
last_x = best_x
last_f = best_f
trial x_1 = best_x + 1
trial_x_r = best_x + r
if F(trial_x_1) > best_f:
best_x = trial_x_1
best_f = f(best_x)
elif f(trial x_r) > best_f:
best_x
best_f
else:

trial_x_r
£(best_x)

either the absolute best scenario has been found,
or the step size is too large

= 0.5%1

= 0.5t

R

5/29

Example: One variable

100 1

=100 A

Heuristic Optimization 6/29

Example: Two-variable

1

fix,y) = N (

cos* x — 2 cos® xsin? y + sin* y)

x € {+1,+5},y € {+1,45}

Heuristic Optimization 7/29

Example: Two-variable code

Full code on RELATE website:

Hill climbing algorithm begins here. #####4#4#4#4
X = np.linspace(1,5,401) # set up a grid in x

Y = np.linspace(1,5,401) # set up a grid in vy

xy = np.random.randint (401,size=(2,))

u = np.array((0,-1)) # "up”
d = np.array((0,+1)) # ”down”
1 = np.array((=-1,0)) # ”left”
r = np.array((+1,0)) # "right”
num steps = 500
best xy = xy
best £ = £(xy[0 J,xy[1 1)
steps = np.empty((num steps,3))
Heuristic Optimization 8/29

Example: Two-variable code

for 1 in range(num steps):

Try a step in each direction until

no improvement is possible.

trial xy = xy.copy()

cycle through directions to step

step dir = (u,d,l,r)[1 % 4]

trial xy (Xy + step dir) % X.shape[0]
xt = X[trial xy[0]]
yt = Y[trial xy[1]]

if £(xt, yt)>best f:
If the solution improves, accept it.
best £ = £(xt, yt)
best xy = trial xy.copy ()
xy = trial xy.copy()

Heuristic Optimization 9/29

Example: Two-variable

Observe the red dot on the hill top. A "good enough” solution

that is local maxima.
Heuristic Optimization 10/29

M2: Random sampling

Strategy: Choosing at random a candidate solution
(sometimes within a constrained space).

Heuristic Optimization 11/29

M2: Random sampling

Strategy: Choosing at random a candidate solution
(sometimes within a constrained space).

Analogy: Picking random heights in the region of a hill,
accepting the tallest as the highest.

Heuristic Optimization 11/29

M2: Random sampling

Strategy: Choosing at random a candidate solution
(sometimes within a constrained space).

Analogy: Picking random heights in the region of a hill,
accepting the tallest as the highest.

Pitfall: Without good constraints, missing the optimum
value.

Heuristic Optimization 11/29

M3: Random walk

Also uses random numbers, but:

Strategy: Tweaking the current candidate solution at
random, and possibly rejecting the solution if worse.

Heuristic Optimization 12/29

M3: Random walk

Also uses random numbers, but:
Strategy: Tweaking the current candidate solution at
random, and possibly rejecting the solution if worse.

Analogy: Choose random steps near a hill, but maybe not
take the step if it's worse.

Heuristic Optimization 12/29

M3: Random walk

Also uses random numbers, but:
Strategy: Tweaking the current candidate solution at
random, and possibly rejecting the solution if worse.

Analogy: Choose random steps near a hill, but maybe not
take the step if it's worse.

Pitfall: Converging slowly, can still miss best candidate
solution.

Heuristic Optimization 12/29

M3: Random walk

Also uses random numbers, but:

Strategy: Tweaking the current candidate solution at
random, and possibly rejecting the solution if worse.

Analogy: Choose random steps near a hill, but maybe not
take the step if it's worse.

Pitfall: Converging slowly, can still miss best candidate
solution. BUT: has a way to avoid getting stuck in a local
optima.

Heuristic Optimization 12/29

M3: Random walk algorithm

Set up a figure of merit f.

Select a starting guess xo.

Change a random feature of the guess.

If this improves, keep it and cycle.

If this does not improve, sometimes keep it anyway.
When number of trials has been reached, terminate.

mmO O W >

Heuristic Optimization 13/29

M3: Random walk

Full code on RELATE website:

Random walk algorithm begins here.

FHEFFHAHHFAA RS

X = np.linspace(1,5,401) # set up a grid in x
Y = np.linspace(1,5,401) # set up a grid in vy

xy = np.random.randint (401,size=(2,)

u = np.array((0,-1)) # "up”

d = np.array((0,+1)) # ”down”
1 = np.array((-1,0)) # "left”
r = np.array((+1,0)) # "right”

num steps = 10000

best xy = xy

best £ = £(xy[0],xy[1])
(

steps = np.empty((num steps,3))

Heuristic Optimization

)

14/29

M3: Random walk

for 1 in range(num steps):
Take a random step, 25% chance in each directio
trial xy = xy.copy()

chance = np.random.uniformf()
if chance < 0.25:

trial xy = (xy + u) % Y.shapel[0]
elif chance < 0.5:

trial xy = (xy + d) % Y.shapel[0]
elif chance < 0.75:

trial xy = (xy + 1) % X.shape[0]
else:

trial xy = (xy + r) % X.shape[0]

Heuristic Optimization 15/29

M3: Random walk

xt X[trial xy[O]]
yt = Y[trial xy[1]]
if £(xt, yt) > best f:
If the solution improves, accept it.
best £ = £(xt, yt)
best xy = trial xy.copy()
xy = trial xy.copy ()
else:
If the solution does not improve,
sometimes accept it.
chance = np.random.uniform()
if chance < 0.25:
xy = trial xy.copy()

Heuristic Optimization 16/29

M3: Random walk

Heuristic Optimization 17/29

Heuristic Optimization

When we use heuristic optimization methods, we are ok
with a "good enough” solution

If we want to crack a password, can we have a "good
enough” solution?

So to use heuristic optimization, we require:

A. A problem with relative solution assessment
B. An algorithm to assess solutions

Heuristic Optimization 18/29

Our different optimization strategies, so far:

A. Brute-force (last lecture)

B. Hill-climbing
Select heaviest item, then add next heaviest, etc.
Select most valuable item, then add next most
valuable item, etc.

C. Random sampling

D. Random walk: sample randomly, then iteratively allow

changes based on probability

Heuristic Optimization 19/29

Setup - Your LV bags

import numpy as np
import matplotlib.pyplot as plt
import itertools

n = 10
#Num of bags
items = list(range(n))
#Weight of each bag
weights = np.random.uniform(size=(n,)) * 50
#Value of each bag
values = np.random.uniform(size=(n,)) * 100
Heuristic Optimization 20/29

Setup -How you decide

def f(wts, wvals):
total weight = 0
total value = 0

for i in range(len(wts)):
Add weight
total weight += wts[1]
Add value
total value += vals[1]

if total weight >= 50:
return 0

else:
return total value

Heuristic Optimization 21/29

Brute-force search

import itertools

max value = 0.0
max set = None
for i in range(n):
for set in itertools.combinations(items,i):
wts = []
vals = []
for item in set:
wts.append(weights[item])
vals.append(values|[item])
value = f£(wts,vals)
if value > max value:
max value = value
max set = set

Heuristic Optimization 22/29

Hill-climbing search

max wt = 50.0

wts orig = wts[:]
vals orig = vals[:]

best vals []

best wts []

best vals.append(max(vals))

best wts.append(wts[vals.index(max(vals))])
wts.remove (wts|[vals.index(max(vals)) 1)

vals.remove (max(vals))

Heuristic Optimization 23/29

Hill-climbing search

while sum(best wts) + wts[vals.index (max(vals))]
< max wt:
best vals.append(max(vals))
best wts.append(wts[vals.index(max(vals))
wts.remove (wts[vals.index(max(vals)) 1)
vals.remove (max(vals))

Heuristic Optimization 24/29

Random walk - structure

try a configuration at random
alter it at random with small likelihood
of getting worse
for t in range(1000):
two possible moves: adding or removing
if f£(next wts,next vals) >
f(trial wts,trial vals):
if improvement, accept the change
else:
if no improvement, *maybe* accept the change

1f all-time best, track it

See full code in random-walk.py in lec17 in RELATE

Heuristic Optimization 25/29

Comparing Results

Comparing Results 26/29

Comparing results

arrays don’t play nicely with comparisons:
one = np.ones((5,))
if one ==

print (’setup correct’)

Comparing Results 27/29

Comparing results

arrays don’t play nicely with comparisons:
one = np.ones((5,))
if one ==
print (’setup correct’)
ValueError: The truth value of an array with more than one
element is ambiguous.

Comparing Results 27/29

Comparing results

arrays don’t play nicely with comparisons:
one = np.ones((5,))
if one ==
print (’setup correct’)
ValueError: The truth value of an array with more than one
element is ambiguous.

Which element is compared? It's ambiguous.

Comparing Results 27/29

Comparing results

arrays have the built-in methods any and a11:

one = np.ones((5,))

if (one == y.all():
print("setup is all ones’)

Comparing Results 28/29

Comparing results

arrays have the built-in methods any and a11:

one = np.ones((5,))

if (one == y.all():
print("setup is all ones’)

domain = np.linspace(0,10,11)
if (domain ==) .any () :
print (’'setup contains one’)

Comparing Results 28/29

A. Heuristic optimization - when optimal is not practical but
"good enough” is good enough

. Hill-climbing method
Random sampling and random walk

D. Need way to quantify to say it is "good enough” - figure of
merit or cost function

E. numpy comparing elements of an array: .all() or
.any ()

O w

Comparing Results 29/29

	Optimization Redux
	Heuristic Optimization
	Comparing Results

