Numerical Python

Brute-Force Solution

Announcements

quiz: quiz16 due on Tues 12/11
lab: lab on Fri 15/11
hw: hw 08 due 13/11
exam02 this wed 13th Nov 8pm
lec 06 to 13 and related stuff
CompE @ LTE 102/103
ME @ LTE 201/202
EE and CE @ LTW 102/103

Roadmap

Objectives

A. Apply a brute-force (comprehensive) search to solve problems relying on multiple dependent variables, with or without constraints.
B. Understand some of the tools available with itertools to obtain permutations and combinations of items in a container.

Solving Equations Recap

Did you use this to solve your math

For scipy.optimize.newton (f, x0),
f is a function

```
def thisIsHowYouDoIt(x):
    return x**2 + 4*x - 1
```

$x 0$ is the initial guess number, say $x 0=5$
To run, type:

```
scipy.optimize.newton(thisIsHowYouDoIt, 5)
```


Solving eqns - scipy.optimize

We can also find minima using scipy.optimize.fmin (f, x0).

Solving eqns - scipy.optimize

We can also find minima using scipy.optimize.fmin (f,x0).
This requires you to be clever in preparing f : you may have to manipulate your function.

Solving eqns - scipy.optimize

```
import matplotlib.pyplot as plt
import numpy as np
import scipy.optimize
def f( x ):
    return x**2 + x - 1
x = np.linspace( -10,10,1000 )
xstar = scipy.optimize.fmin( f, x0=3 )
# or
# xstar = scipy.optimize.fmin( f, 3 )
plt.plot( x,f( x ),'r--', xstar,f( xstar ),'ro' )
plt.show()
```


Solving eqns - scipy.optimize

How does this code decide to stop? How does the computer know it has reacheed the minimum??

Solving eqns - scipy.optimize

How does this code decide to stop? How does the computer know it has reacheed the minimum??
Comparing the difference between the current and last value with the TOLERANCE !

Solving eqns - scipy.optimize

import matplotlib.pyplot as plt
import numpy as np
import scipy.optimize
def $f(x)$:
return 9e-3*x**4 - $x * * 2$
x = np.linspace(-10,10,1000)
xstar $=$ scipy.optimize.fmin (f, $x 0=3$)
 plt.show()

Solving eqns - scipy.optimize

How do we get the value of the other minima?

Solving eqns - scipy.optimize

How do we get the value of the other minima? Change x0!

Solving eqns - scipy.optimize

import matplotlib.pyplot as plt import numpy as np
import scipy.optimize
def $f(x)$):
return $9 e-3 * x^{* *} 4-x^{* *} 2$
$\mathrm{x}=\mathrm{np} .1 \mathrm{inspace}(-10,10,1000$)
xstar1 = scipy.optimize.fmin(f, 0.1)
xstar2 = scipy.optimize.fmin(f, -0.1)
xstar3 $=$ scipy.optimize.fmin (f, -0.0001)
plt.plot($\left.x, f(x),^{\prime} r-r^{\prime}, ~ x s t a r 1, f(x s t a r 1)\right)^{\prime} r o^{\prime}$, xstar2,f(xstar2),'bo', xstar3,f(xstar3),'go')
plt.show()

Solving eqns - scipy.optimize

Why does fmin give us a maxima at the green dot?

Solving eqns - scipy.optimize

Why does fmin give us a maxima at the green dot?
It does not! It stops there as the difference between the current and last values is smaller than the TOLERANCE !

Solving eqns - scipy.optimize

import matplotlib.pyplot as plt
import numpy as np
import scipy.optimize
def $f(x)$:
return $9 \mathrm{e}-3 * \mathrm{x}^{* *} 4-\mathrm{x} * * 2+\mathrm{x}$
x = np.linspace(-10,10,1000)
xstar1 = scipy.optimize.fmin(f, $x 0=1$)
plt.plot($x, f(x),^{\prime r--', ~ x s t a r 1, f(~ x s t a r 1 ~), ' r o ' ~) ~}$ plt.show()

Solving eqns - scipy.optimize

Solving eqns - scipy.optimize

Did we get the global minima or the local minina?
Plot to see what is happening!

Optimization

Optimization

On vacation, you purchase a collection of n souvenirs of varying weight and value. When it comes time to pack, you find that your bag has a weight limit of 50 kg . What is the best set of items to take on the flight?
What is your goal?

Optimization

On vacation, you purchase a collection of n souvenirs of varying weight and value. When it comes time to pack, you find that your bag has a weight limit of 50 kg . What is the best set of items to take on the flight?
What is your goal?

```
To maximize the value of souvenirs and
minimize the weight! Trying to optimize
what you can carry!
```


Optimization

Given a function $f(\underline{x})$, find $\underline{x}=\underline{x}^{*}$ such that $f\left(\underline{x}^{*}\right)$ is maximized (or minimized).

The goal is to search all \underline{x} to find a \underline{x}^{*} which yields the optimal $f\left(\underline{x}^{*}\right)$.

Many clever techniques exist, but we'll start with a naïve approach, i.e., Brute-force Method.

Create the problem: Setup

import numpy as np
np.random.seed (101)
\#number of souvenirs that you bought \#and hope to take back
$\mathrm{n}=10$
items = list(range(n))
\# weight of item
weights $=$ np.random.uniform(size=(n,)) * 50
\# value of item => \$
values $=$ np.random. uniform(size=(n,)) * 100

Decision code

```
def f( wts, vals ):
    total_weight = 0
    total_value = 0
    for i in range( len( wts ) ):
        total_weight += wts[ i ]
        total_value += vals[ i ]
    if total_weight >= 50:
        return 0
    else:
    return total_value
```


Decision code

```
def f( wts, vals ) :
    total_weight = 0
    total_value = 0
    for i in range( len( wts ) ):
        total_weight += wts[ i ]
        total_value += vals[ i ]
    if total_weight >= 50:
        return 0
    else:
    return total_value
```

How to select all the possibilities so that this decision code can calculate?

Given a function $f(\underline{x})$, find $\underline{x}=\underline{x}^{*}$ such that $f\left(\underline{X}^{*}\right)$ is maximized (or minimized).

Brute-force searches the entire domain (all possible \underline{x}) of f,

How could we do this in our case?

Optimization

Two useful functions from the itertools module:
A. combinations: provide all subsets of size n.
B. product: replace nested for loops.

Optimization - combinations

combinations: provide all subsets of size n.

Order of the entries is maintained

```
import itertools
a = [ 1,2,3,4 ]
for x in itertools.combinations( a,2 ):
    print( x )
```


Optimization - combinations

combinations: provide all subsets of size n.

Order of the entries is maintained

import itertools
$a=[1,2,3,4]$
for x in itertools.combinations($\mathrm{a}, 2$): print(x)
$(1,2)$
$(1,3)$
$(1,4)$
$(2,3)$
$(2,4)$
$(3,4)$

Optimization - product 1

product: replace nested for loops.
Can use repeat=n argument as well.
Order of the entries is maintained

```
import itertools
a = [ 1,2,3,4 ]
b = [ 'g','h','i' ]
for x in itertools.product( a,b ):
    print( x )
```


Optimization - product 1

product: replace nested for loops.
Can use repeat=n argument as well. Order of the entries is maintained

```
import itertools
a = [ 1,2,3,4 ]
b = [ 'g','h','i' ]
for x in itertools.product( a,b ):
    print( x )
(1, 'g')
(1, 'h')
(1, 'i')
(2, 'g')
(4, 'i')
```


Optimization - product 2

product: replace nested for loops.
Can use repeat=n argument as well.

```
import itertools
a = [ 1,2,3,4 ]
b = [ 'g','h','i' ]
for x in itertools.product( a, repeat=3 ):
    print( x )
```


Optimization - product 2

product: replace nested for loops.
Can use repeat=n argument as well.

```
import itertools
a = [ 1,2,3,4 ]
b = [ 'g','h','i' ]
for x in itertools.product( a, repeat=3 ):
    print( x )
(1, 1, 1)
(1, 1, 2)
(1, 1, 3)
(1, 1, 4)
(1, 2, 1)
```


Question 1

```
import itertools
a = [ 1,2,3,4 ]
for x in itertools.product( a, repeat=2 ):
    print( x )
for x in itertools.combinations( a,2 ):
    print( x )
```

Are they the same?

Question 1

```
import itertools
a = [ 1,2,3,4 ]
for x in itertools.product( a, repeat=2 ):
    print( x )
for x in itertools.combinations( a,2 ):
    print( x )
```

Are they the same?
Ans:
Combination takes from one list and combines the different items.
Product take from many lists (including itself again). In both commands, the order of the items is maintained.
Go test in python

Question 2

$$
\begin{aligned}
& x={ }^{\prime} A B C D D^{\prime} \\
& z=\text { 'XYZ' } \\
& \text { for a in itertools.product(} x, z \text {): } \\
& \text { print(' '.join(a)) }
\end{aligned}
$$

Which of the following is not printed?
A 'A X^{\prime}
$B^{\prime} B D^{\prime}$
C ${ }^{\prime} \mathrm{C} \mathrm{X}^{\prime}$
D 'D Z^{\prime}

Question 2

$$
\begin{aligned}
& x={ }^{\prime} A B C D D^{\prime} \\
& z=\text { 'XYZ' } \\
& \text { for a in itertools.product(} x, z \text {): } \\
& \text { print(' '.join(a)) }
\end{aligned}
$$

Which of the following is not printed?
A 'A X^{\prime}
B ${ }^{\prime} B D^{\prime} \star$
C ${ }^{\prime} \mathrm{C} \mathrm{X}^{\prime}$
D 'D Z^{\prime}

Given a function $f(\underline{x})$, find $\underline{x}=\underline{x}^{*}$ such that $f\left(\underline{x}^{*}\right)$ is don't squeeze your maximized (or minimized).

Brute-force searches the entire domain (all possible \underline{x}) of f => Search for all possible combinations to satisfy f

How could we do this in our case?

Setup 1

import numpy as np
np.random.seed (101)
\#number of souvenirs that you bought \#and hope to take back
$\mathrm{n}=10$
items = list(range(n))
\# weight of item
weights $=$ np.random.uniform(size=(n,)) * 50
\# value of item => \$
values $=$ np.random. uniform(size=(n,)) * 100

Setup 2

import itertools

```
max value = 0.0
max_set = None
for i in range(n):
    for set in itertools.combinations( items,i ):
    wts= []
    vals = []
    for item in set:
        wts.append( weights[ item ] )
        vals.append( values[ item ] )
    value = f( wts,vals )
    if value > max_value:
        max_value = value
        max_set = set
```


Decision code

```
def f( wts, vals ):
    total_weight = 0
total_value = 0
```

for i in range(len(wts)):
total_weight += wts[i]
total_value += vals[i]
if total_weight >= 50:
return 0
else:
return total_value

Head inline with

spine, chin up, looking

- straight ahead.

Lift your chest but don't squeeze your

What if we need to add another constraint, like bulk

 volume?Hands about shoulder-width apart with overhand grip. $O R$:
Optional overhand

Do not lean backuvard or bend forward.

Back erect with
slight arch. DO
NOT ROUND OR
FLATTEN BACK.

Push hips back first, and then bend your lanees once bar reaches knee level, keeping bar close to body.

What if we need to add another constraint, like bulk volume?

Modify fi, which is known as the figure of merit or the cost function.

Another Problem: Pwd search

Brute-force search of a password:

def check_password(pwd):
if pwd == 'pas':
return True
else:
return False
chars = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz0123456789'
for pair in itertools.product(chars, repeat=3):
pair = ''.join(pair)
if check_password(pair):
print(pair)

Optimization

Brute-force search of a password:

$$
\begin{aligned}
& 2 \times n(\text { alphabet })+n(\text { digits })+n(\text { special }) \\
= & 2 \times 26+10+\{24-32\} \\
= & \{86-94\}
\end{aligned}
$$

possibilities per letter! This gets very big very quickly!

Optimization of Big Problems

When things get too big,
Many optimization problems might take many, many, many years to solve
Use supercomputer
Use clever algorithm e.g., consider symmetry
Simplify the problem: Get approximately correct solutions

Summary

A. Optimization solver - simplest using Brute force
B. import itertools
C. combinations and product
D. Be careful of using Brute force when too many combinations/products!!!

