
NumericalPython
CS101 lec16

Brute-Force Solution

2018-11-11

Announcements

quiz: quiz16 due on Tues 12/11
lab: lab on Fri 15/11
hw: hw08 due 13/11
exam02 this wed 13th Nov 8pm
lec 06 to 13 and related stuff

CompE @ LTE 102/103
ME @ LTE 201/202
EE and CE @ LTW 102/103

Roadmap

Objectives

A. Apply a brute-force (comprehensive) search to solve
problems relying on multiple dependent variables, with or
without constraints.

B. Understand some of the tools available with itertools to
obtain permutations and combinations of items in a
container.

Solving Equations Recap

SolvingEquationsRecap

Did youuse this to solve yourmath
hw???

Solving Equations Recap

For scipy.optimize.newton(f, x0),
f is a function
def thisIsHowYouDoIt(x):

return x**2 + 4*x - 1

x0 is the initial guess number, say x0 = 5
To run, type:
scipy.optimize.newton(thisIsHowYouDoIt, 5)

Solving eqns - scipy.optimize

Solving Equations Recap

We can also find minima using scipy.optimize.fmin(
f,x0).

This requires you to be clever in preparing f: you may
have to manipulate your function.

Solving eqns - scipy.optimize

Solving Equations Recap

We can also find minima using scipy.optimize.fmin(
f,x0).
This requires you to be clever in preparing f: you may
have to manipulate your function.

Solving eqns - scipy.optimize

Solving Equations Recap

import matplotlib.pyplot as plt
import numpy as np
import scipy.optimize

def f(x):
return x**2 + x - 1

x = np.linspace(-10,10,1000)
xstar = scipy.optimize.fmin(f, x0=3)
or
xstar = scipy.optimize.fmin(f, 3)

plt.plot(x,f(x),’r--’, xstar,f(xstar),’ro’)
plt.show()

Solving eqns - scipy.optimize

Solving Equations Recap

How does this code decide to stop? How does the computer
know it has reacheed the minimum??

Comparing the difference between the current
and last value with the TOLERANCE !

Solving eqns - scipy.optimize

Solving Equations Recap

How does this code decide to stop? How does the computer
know it has reacheed the minimum??
Comparing the difference between the current
and last value with the TOLERANCE !

Solving eqns - scipy.optimize

Solving Equations Recap

import matplotlib.pyplot as plt
import numpy as np
import scipy.optimize

def f(x):
return 9e-3*x**4 - x**2

x = np.linspace(-10,10,1000)
xstar = scipy.optimize.fmin(f, x0=3)

plt.plot(x,f(x),’r--’, xstar,f(xstar),’ro’)
plt.show()

Solving eqns - scipy.optimize

Solving Equations Recap

How do we get the value of the other minima?

Change x0 !

Solving eqns - scipy.optimize

Solving Equations Recap

How do we get the value of the other minima?
Change x0 !

Solving eqns - scipy.optimize

Solving Equations Recap

import matplotlib.pyplot as plt
import numpy as np
import scipy.optimize

def f(x):
return 9e-3*x**4 - x**2

x = np.linspace(-10,10,1000)
xstar1 = scipy.optimize.fmin(f, 0.1)
xstar2 = scipy.optimize.fmin(f, -0.1)
xstar3 = scipy.optimize.fmin(f, -0.0001)

plt.plot(x,f(x),’r--’, xstar1,f(xstar1),’ro’,
xstar2,f(xstar2),’bo’,
xstar3,f(xstar3),’go’)

plt.show()

Solving eqns - scipy.optimize

Solving Equations Recap

Why does fmin give us a maxima at the green dot?

It does not! It stops there as the difference
between the current and last values is smaller
than the TOLERANCE !

Solving eqns - scipy.optimize

Solving Equations Recap

Why does fmin give us a maxima at the green dot?
It does not! It stops there as the difference
between the current and last values is smaller
than the TOLERANCE !

Solving eqns - scipy.optimize

Solving Equations Recap

import matplotlib.pyplot as plt
import numpy as np
import scipy.optimize

def f(x):
return 9e-3*x**4 - x**2 + x

x = np.linspace(-10,10,1000)
xstar1 = scipy.optimize.fmin(f, x0=1)

plt.plot(x,f(x),’r--’, xstar1,f(xstar1),’ro’)
plt.show()

Solving eqns - scipy.optimize

Solving Equations Recap

Did we get the global minima or the local minina?
Plot to see what is happening!

Solving eqns - scipy.optimize

Solving Equations Recap

Did we get the global minima or the local minina?
Plot to see what is happening!

Optimization

Optimization

Optimization

Optimization 1/21

On vacation, you purchase a collection of n souvenirs of
varying weight and value. When it comes time to pack, you
find that your bag has a weight limit of 50 kg. What is the
best set of items to take on the flight?
What is your goal?

To maximize the value of souvenirs and
minimize the weight! Trying to optimize
what you can carry!

Optimization

Optimization 1/21

On vacation, you purchase a collection of n souvenirs of
varying weight and value. When it comes time to pack, you
find that your bag has a weight limit of 50 kg. What is the
best set of items to take on the flight?
What is your goal?
To maximize the value of souvenirs and
minimize the weight! Trying to optimize
what you can carry!

Optimization

Optimization 2/21

Given a function f(x), find x = x∗ such that f(x∗) is
maximized (or minimized).

The goal is to search all x to find a x∗ which yields the
optimal f(x∗).

Many clever techniques exist, but we’ll start with a naïve
approach, i.e., Brute-force Method.

Create the problem: Setup

Optimization 3/21

import numpy as np
np.random.seed(101)

#number of souvenirs that you bought
#and hope to take back
n = 10
items = list(range(n))

weight of item
weights = np.random.uniform(size=(n,)) * 50

value of item => $
values = np.random.uniform(size=(n,)) * 100

Decision code

Optimization 4/21

def f(wts, vals):
total_weight = 0
total_value = 0

for i in range(len(wts)):
total_weight += wts[i]
total_value += vals[i]

if total_weight >= 50:
return 0

else:
return total_value

How to select all the possibilities so that this decision code can
calculate?

Decision code

Optimization 4/21

def f(wts, vals):
total_weight = 0
total_value = 0

for i in range(len(wts)):
total_weight += wts[i]
total_value += vals[i]

if total_weight >= 50:
return 0

else:
return total_value

How to select all the possibilities so that this decision code can
calculate?

Optimization 5/21

Given a function f(x), find x = x∗ such that f(x∗) is
maximized (or minimized).

Brute-force searches the entire domain (all possible x) of f.

How could we do this in our case?

Optimization

Optimization 6/21

Two useful functions from the itertools module:
A. combinations: provide all subsets of size n.
B. product: replace nested for loops.

Optimization - combinations

Optimization 7/21

combinations: provide all subsets of size n.
Order of the entries is maintained

import itertools

a = [1,2,3,4]
for x in itertools.combinations(a,2):

print(x)

(1, 2)
(1, 3)
(1, 4)
(2, 3)
(2, 4)
(3, 4)

Optimization - combinations

Optimization 7/21

combinations: provide all subsets of size n.
Order of the entries is maintained

import itertools

a = [1,2,3,4]
for x in itertools.combinations(a,2):

print(x)

(1, 2)
(1, 3)
(1, 4)
(2, 3)
(2, 4)
(3, 4)

Optimization - product 1

Optimization 8/21

product: replace nested for loops.
Can use repeat=n argument as well.
Order of the entries is maintained

import itertools
a = [1,2,3,4]
b = [’g’,’h’,’i’]
for x in itertools.product(a,b):

print(x)

(1, ’g’)
(1, ’h’)
(1, ’i’)
(2, ’g’)
...
(4, ’i’)

Optimization - product 1

Optimization 8/21

product: replace nested for loops.
Can use repeat=n argument as well.
Order of the entries is maintained

import itertools
a = [1,2,3,4]
b = [’g’,’h’,’i’]
for x in itertools.product(a,b):

print(x)

(1, ’g’)
(1, ’h’)
(1, ’i’)
(2, ’g’)
...
(4, ’i’)

Optimization - product 2

Optimization 9/21

product: replace nested for loops.
Can use repeat=n argument as well.

import itertools
a = [1,2,3,4]
b = [’g’,’h’,’i’]
for x in itertools.product(a, repeat=3):

print(x)

(1, 1, 1)
(1, 1, 2)
(1, 1, 3)
(1, 1, 4)
(1, 2, 1)
...

Optimization - product 2

Optimization 9/21

product: replace nested for loops.
Can use repeat=n argument as well.

import itertools
a = [1,2,3,4]
b = [’g’,’h’,’i’]
for x in itertools.product(a, repeat=3):

print(x)

(1, 1, 1)
(1, 1, 2)
(1, 1, 3)
(1, 1, 4)
(1, 2, 1)
...

Question 1

Optimization 10/21

import itertools
a = [1,2,3,4]
for x in itertools.product(a, repeat=2):

print(x)
for x in itertools.combinations(a,2):

print(x)

Are they the same?

Ans:
Combination takes from one list and combines the different
items.
Product take from many lists (including itself again). In both
commands, the order of the items is maintained.
Go test in python

Question 1

Optimization 10/21

import itertools
a = [1,2,3,4]
for x in itertools.product(a, repeat=2):

print(x)
for x in itertools.combinations(a,2):

print(x)

Are they the same?
Ans:
Combination takes from one list and combines the different
items.
Product take from many lists (including itself again). In both
commands, the order of the items is maintained.
Go test in python

Question 2

Optimization 11/21

x = ’ABCD’
z = ’XYZ’

for a in itertools.product(x,z):
print(’ ’.join(a))

Which of the following is not printed?

A ’A X’
B ’B D’
C ’C X’
D ’D Z’

Question 2

Optimization 12/21

x = ’ABCD’
z = ’XYZ’

for a in itertools.product(x,z):
print(’ ’.join(a))

Which of the following is not printed?

A ’A X’
B ’B D’ ⋆

C ’C X’
D ’D Z’

Optimization 13/21

Given a function f(x), find x = x∗ such that f(x∗) is
maximized (or minimized).

Brute-force searches the entire domain (all possible x) of f
=> Search for all possible combinations to satisfy f

How could we do this in our case?

Setup 1

Optimization 14/21

import numpy as np
np.random.seed(101)

#number of souvenirs that you bought
#and hope to take back
n = 10
items = list(range(n))

weight of item
weights = np.random.uniform(size=(n,)) * 50

value of item => $
values = np.random.uniform(size=(n,)) * 100

Setup 2

Optimization 15/21

import itertools

max_value = 0.0
max_set = None
for i in range(n):

for set in itertools.combinations(items,i):
wts = []
vals = []
for item in set:

wts.append(weights[item])
vals.append(values[item])

value = f(wts,vals)
if value > max_value:

max_value = value
max_set = set

Decision code

Optimization 16/21

def f(wts, vals):
total_weight = 0
total_value = 0

for i in range(len(wts)):
total_weight += wts[i]
total_value += vals[i]

if total_weight >= 50:
return 0

else:
return total_value

Optimization 17/21

What if we need to add another constraint, like bulk
volume?

Modify f, which is known as the figure of merit or the cost
function.

Optimization 17/21

What if we need to add another constraint, like bulk
volume?

Modify f, which is known as the figure of merit or the cost
function.

Another Problem: Pwdsearch

Optimization 18/21

Brute-force search of a password:

def check_password(pwd):
if pwd == ’pas’:

return True
else:

return False

chars = ’ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz0123456789’

for pair in itertools.product(chars, repeat=3):
pair = ’’.join(pair)
if check_password(pair):

print(pair)

Optimization

Optimization 19/21

Brute-force search of a password:

2× n(alphabet) + n(digits) + n(special)
= 2× 26 + 10 + {24–32}
= {86–94}

possibilities per letter! This gets very big very quickly!

Optimization ofBigProblems

Optimization 20/21

When things get too big,
Many optimization problems might take many, many, many
years to solve
Use supercomputer
Use clever algorithm e.g., consider symmetry
Simplify the problem: Get approximately correct solutions

Summary

Optimization 21/21

A. Optimization solver - simplest using Brute force
B. import itertools
C. combinations and product
D. Be careful of using Brute force when too many

combinations/products!!!

	Solving Equations Recap
	Optimization

