Numerical Python

Solving Equations

Announcements

quiz: quiz15 due on Thurs 07/11
lab: lab on Fri 08/11
hw: hw 07 due today
exam02 on 13/11

Roadmap

Objectives

A. Represent and solve equations in an efficient manner. => Similar to lec on Random and Numpy
B. Locate a function's zeroes using a graphical method or Newton's method. => lec on plotting
C. Locate a function's minima using a graphical method or 'scipy.optimize.minimize'.

Question

```
x = np.ones( 10 )
for i in range( 10 ):
    try:
        ???
    except:
        print( 'Error on step %d.' %i )
        continue
```

Which of the following candidates for ??? would not produce an error message?

A $x+=x[i+1]$
B $x\left[\begin{array}{l}\text { i }] /=0\end{array}\right.$
C $x[-i-1]=\operatorname{sum}(x[$:i $])$
D x[10-i] $=\operatorname{sum}(x[$:i])

Question

```
x = np.ones( 10 )
for i in range( 10 ):
    try:
        ???
    except:
    print( 'Error on step %d.' %i )
    continue
```

Which of the following candidates for ??? would not produce any error message?

A $x+=x[i+1]$ index error
B x[i] /= $0 \star$ (surprise! numpy can handle)
C $x[-i-1]=\operatorname{sum}(x[: i]) \star$
D x[10-i] = sum(x[:i]) index error

Equations

Equations

How do we represent equations on computers?

Equations

How do we represent equations on computers?
A. As a function
B. Write some expressions
C. Write as a series
D. Write as symbolic terms (in later lectures)
... (more)

Equations

How do we represent equations on computers?

A. As a function
B. Write some expressions
C. Write as a series
D. Write as symbolic terms (in later lectures)
... (more)

1. In other words, we convert the equation into something that can be calculated. We want numbers out of them.

Equations

How do we represent equations on computers?

A. As a function
B. Write some expressions
C. Write as a series
D. Write as symbolic terms (in later lectures)
... (more)

1. In other words, we convert the equation into something that can be calculated. We want numbers out of them.
2. Many times we represent the function as a pair of arrays, x and y (like for plotting).
3. We can also represent equations using symbols from the library sympy, (later lectures).

Equations

Suppose you wish to evaluate the function:

$$
y=a \sin ^{3} x+b \sin ^{2} x+c \sin x+d
$$

Equations

Suppose you wish to evaluate the function:

$$
y=a \sin ^{3} x+b \sin ^{2} x+c \sin x+d
$$

On a computer, which way is better?

$$
\begin{aligned}
& \text { A. } y=a * \sin (x) * * 3+b * \sin (x) * * 2+c^{*} \sin (x)+d \\
& \text { B. } \quad t=\sin (x) \\
& y=a * t * * 3+b * t * * 2+c * t+d
\end{aligned}
$$

Equations

Suppose you wish to evaluate the function:

$$
y=a \sin ^{3} x+b \sin ^{2} x+c \sin x+d
$$

On a computer, which way is better?

$$
\begin{aligned}
& \text { A. } \quad y=a * \sin (x) * * 3+b * \sin (x) * * 2+c * \sin (x)+d \\
& \text { B. } \quad t=\sin (x) \\
& y=a * t * 3+b * t * * 2+c * t+d
\end{aligned}
$$

The first way takes three times longer!
sin is calculated every single time it is used.

Equations

What about calculating π ? Which is faster?
A. The Monte Carlo method?
B. Series solution?

$$
\frac{\pi}{4}=+1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\frac{1}{13}-\frac{1}{15}, \ldots
$$

π using Monte Carlo

import numpy.random as npr def mc_pi(n):
$x y=n p r . r a n d(n, 2)$ * $2-1$
n_circle $=0$
for pair in $x y:$
........
return estimate

π using Series summation

```
def series_pi( n ) :
    result = 0
    for k in range( 1,n ):
    term = ( -1 ) ** (k+1 ) ) / ( 2 * k - 1)
    result += term
    return result*4
```


Equations

Which way is more efficient computationally?

Equations

Which way is more efficient computationally?
The series solution is much better, and other better ways may exist.

We can quantify this if we can compare algorithm.
How to quantify?

Code performance

In order to compare algorithms, we need a way to measure a code's runtime (called "wallclock time").

Code performance

In order to compare algorithms, we need a way to measure a code's runtime (called "wallclock time").
timeit module provides three ways to time your code:

Code performance

In order to compare algorithms, we need a way to measure a code's runtime (called "wallclock time").
timeit module provides three ways to time your code:
» import timeit
A. Interpreter: timeit.timeit (code,
number=10000)

Code performance

In order to compare algorithms, we need a way to measure a code's runtime (called "wallclock time").
timeit module provides three ways to time your code:
» import timeit
A. Interpreter: timeit.timeit (code,
number=10000)
i. » timeit.timeit('some code as string here', number=10000) or
ii. > code = śome code but as a string
» timeit.timeit(code, number=10000)
or
iii. » timeit.timeit(code, setup =
optional, number=10000)

Code performance

In order to compare algorithms, we need a way to measure a code's runtime (called "wallclock time").
timeit module provides three ways to time your code:
» import timeit
A. Interpreter: timeit.timeit(code,
number=10000)
i. » timeit.timeit('some code as
string here', number=10000) or
ii. > code = śome code but as a string
» timeit.timeit(code, number=10000)
or
iii. » timeit.timeit(code, setup =
optional, number=10000)
number $=$ the number of times to run to get an average time
setup $=$ setup python before running code. e.g.,

Code performance

import timeit
B. Jupyter notebook: \%timeit codeJupyter (this is easiest)
codeJupyter is just your def function
These commands run your code many times and return an average time to completion.

```
%timeit mc_pi( 1e5 )
%timeit series_pi( 1e5 )
```


Code performance example

Jupyter:

```
def fib_a( n ):
    sqrt_5 = 5**0.5;
    \(\mathrm{p}=(1+\operatorname{sqrt} 5) / 2\);
    \(q=1 / p ;\)
    return int ( \(\left(p^{* *} n+q^{* *} n\right) / \operatorname{sqrt} 5+0.5\) )
```

\%timeit -n 10 fib_a(50)
-n 10 means run 10 times

Fibonacci sequence example

$$
F_{n}=F_{n-1}+F_{n-2} \quad F_{1}=F_{2}=1
$$

$1,1,2,3,5,8,13,21,34,55, \ldots$

Fibonacci sequence example

$$
F_{n}=F_{n-1}+F_{n-2} \quad F_{1}=F_{2}=1
$$

$$
1,1,2,3,5,8,13,21,34,55, \ldots
$$

The closed-form formula for the nth Fibonacci term is:

$$
F_{n}=\frac{\left(\frac{1+\sqrt{5}}{2}\right)^{n}+\left(\frac{2}{1+\sqrt{5}}\right)^{n}}{\sqrt{5}+\frac{1}{2}}
$$

Analytical Fibonacci

def fib_a(n):
sqrt_5 = 5**0.5;
$\mathrm{p}=(1$ + sqrt_5) / 2;
$\mathrm{q}=1 / \mathrm{p}$;
return int ((p**n + q**n) / sqrt_5 + 0.5)

Recursive Fibonacci

```
def fib_r( n ):
    if n == 1 or n == 2:
        return 1
    else:
        return fib_r( n-1 ) + fib_r( n-2 )
```


Comparison

\%timeit fib_a(12)
\%timeit fib_r(12)

Comparison

```
%timeit fib_a( 12 )
%timeit fib_r( 12 )
```

On my machine, fib_a is $55 \times$ faster than fib_r for $n=$ 12.

Will this performance get better or worse for larger n ?

Equations - series

How do you calculate the value of $\sin x$ or $\exp x$? or $\exp (-x)$?

Equations - series

How do you calculate the value of $\sin x$ or $\exp x$? or $\exp (-x)$?

$$
\begin{aligned}
\exp (-x) & =1-x+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\ldots \\
& =\frac{x^{0}}{0!}-\frac{x^{1}}{1!}+\frac{x^{2}}{2!}-\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\ldots
\end{aligned}
$$

Equations - series

How do you calculate the value of $\sin x$ or $\exp x ?$ or $\exp (-x)$?

$$
\begin{aligned}
\exp (-x) & =1-x+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\ldots \\
& =\frac{x^{0}}{0!}-\frac{x^{1}}{1!}+\frac{x^{2}}{2!}-\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\ldots
\end{aligned}
$$

This series is well-behaved, but...

Equations - series

Intermediate terms can behave like:
if $x=10$,

$$
\frac{10^{5}}{5!}=\frac{100,000}{120}=833.333
$$

Equations - series

Intermediate terms can behave like:
if $x=10$,

$$
\frac{10^{5}}{5!}=\frac{100,000}{120}=833.333
$$

or

$$
\frac{10^{12}}{12!}=\frac{1,000,000,000,000}{479,001,600}=2,087.675
$$

Very large numbers result, leading to inefficient calculation and possible numerical error.
Alternating negative terms will also lead to numerical errors.

So what can we do?

Equations - series

To break a big number to a combination of smaller number. In this case, use

$$
\begin{gathered}
e^{x}=\frac{1}{e^{-x}} \\
e^{x}=\left(e^{\frac{x}{n}}\right)^{n}
\end{gathered}
$$

Original:

$$
e^{12}=\frac{12^{0}}{0!}-\frac{12^{1}}{1!}+\frac{12^{2}}{2!}-\frac{12^{3}}{3!} \ldots+\frac{12^{10}}{12!}+. .
$$

Improved:

$$
\begin{gathered}
e^{12}=\left(e^{\frac{12}{4}}\right)^{4}=e^{3} * e^{3} * e^{3} * e^{3} \\
e^{3}=\frac{3^{0}}{0!}-\frac{3^{1}}{1!}+\frac{3^{2}}{2!}-\frac{3^{3}}{3!} \ldots+\frac{3^{10}}{12!}+\ldots
\end{gathered}
$$

Second one has smaller numbers to divide

Question

Suppose that you wish to evaluate the function:

$$
\begin{aligned}
& t(x)=a \exp (3 x)+b \exp (2 x)+c \exp (x) \\
& A t=a^{*} \exp (3 * x)+b^{\star} \exp (2 * x)+c^{\star} \exp (x) \\
& B z=\exp (x) \\
& t= a^{\star} z^{\star *} 3+b^{\star} z^{\star *} 2+c^{\star} z+d
\end{aligned}
$$

Question

Suppose that you wish to evaluate the function:

$$
t(x)=a \exp (3 x)+b \exp (2 x)+c \exp (x)
$$

On a computer, which is better?

$$
\begin{aligned}
A t & =a * \exp (3 * x)+b * \exp (2 * x)+c^{*} \exp (x) \\
B z & =\exp (x) \\
t & =a^{*} z^{*} * 3+b * z^{* *} 2+c^{*} z+d
\end{aligned}
$$

Solving Equations in x

Solving eqns

Let's consider how to find a specific solution to an equation, a value of x for which $f(x)$ has a desired property. Methods:

Solving eqns

Let's consider how to find a specific solution to an equation, a value of x for which $f(x)$ has a desired property. Methods:
A. Plot LHS == RHS
B. Newton's method or variant
C. Use scipy.optimize
... (more)

Solving eqns - Plot

The easiest way is to plot LHS v. RHS and find the crossover point:

Solving eqns - Plot

$$
\begin{gathered}
x^{2}+5 x-\left(2 x^{2}-3\right)=-2 x^{2}-x \\
x * * 2+5 * x-\left(2 * x^{* *} 2-3\right)==-2 * x^{* * 2-x}
\end{gathered}
$$

Solving eqns - Plot

$$
\begin{aligned}
& \qquad x^{2}+5 x-\left(2 x^{2}-3\right)=-2 x^{2}-x \\
& x^{* * 2}+5 * x-\left(2 * x^{* * 2}-3\right)==-2 * x * * 2-x \\
& x=\text { np.linspace }(-10,10,1001) \\
& \text { lhs }=x^{* * 2}+5 * x-\left(2 * x^{* * 2}-3\right) \\
& \text { rhs }=-2 * x * * 2-x \\
& \text { plt.plot }\left(x, l h s, r^{\prime}, x, r h s, b^{\prime}\right) \\
& \text { plt.plot }\left(x, l h s-r h s,^{\prime} g^{\prime}\right)
\end{aligned}
$$

Solving eqns - Plot

$$
\begin{aligned}
& \qquad x^{2}+5 x-\left(2 x^{2}-3\right)=-2 x^{2}-x \\
& x^{* * 2}+5 * x-\left(2 * x^{* * 2-3)==-2 * x * * 2-x}\right. \\
& x=\text { np.linspace }(-10,10,1001) \\
& \text { lhs }=x^{* * 2}+5 * x-\left(2 * x^{* * 2-3)}\right. \\
& \text { rhs }=-2 * x * * 2-x \\
& \text { plt.plot }\left(x, l h s, r^{\prime}, x, r h s, b^{\prime}\right) \\
& \text { plt.plot }\left(x, l h s-r h s,^{\prime} g^{\prime}\right)
\end{aligned}
$$

This works, but we need something better than eyeballing it.

Solving eqns - Newton's method

Newton's method uses the function and its derivative to locate the x-value of the zero, x^{*}.
The trick, of course, is that you need $f^{\prime}(x)=\frac{d[f(x)]}{d x}$

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

Solving eqns - Newton's method

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

```
def dfdx( f,x,h=1e-3 ):
    return (f(x+h ) - f( x ) ) / h
def newton( f,x0,tol=1e-3 ):
    d = abs( 0 - f(x0 ) )
    while d > tol:
    x0 = x0 - f( x0 ) / dfdx( f,x0 )
    d = abs(0 - f(x0 ) )
    return ( x0,f( x0 ) )
```


Questions

For

$$
\cos x+2=x^{3}-x^{2}
$$

What are the parameters needed for newton ($\mathrm{f}, \mathrm{x} 0$, tol=1e-3) to work?

Questions

For

$$
\cos x+2=x^{3}-x^{2}
$$

What are the parameters needed for newton (

```
f,x0,tol=1e-3 ) to work?
```

def $f(x):$
import numpy as np
return ((np.cos (x) + 2) - ($x * * 3-x^{* *} 2$))
$x 0=$ any number
newton(f, x0, tol=1e-3)

Solving eqns - scipy.optimize

import scipy.optimize
There is a ready-made Newton's method in scipy.optimize
> scipy.optimize.newton (f,x0)
We can also find minima using
> scipy.optimize.fmin (f,x0).

Solving eqns - scipy.optimize

import scipy.optimize
There is a ready-made Newton's method in scipy.optimize
> scipy.optimize.newton (f,x0)
We can also find minima using
> scipy.optimize.fmin(f,x0).
This requires you to be clever in preparing f, you may have to manipulate your function.

Solving eqns - scipy.optimize

import matplotlib.pyplot as plt import numpy as np
import scipy.optimize
def $f(x)$:
return $x^{* *} 2+x-1$
x = np.linspace($-10,10,1000$)
xstar $=$ scipy.optimize.fmin ($f, x 0=3$)
 plt.show()

Solving eqns - scipy.optimize

Optimization (Preview)

Optimization

On vacation, you purchased a range of n souvenirs of varying weight and value. When it comes time to pack, you find that your bag has a weight limit of 22 kg . What is the best set of items to take on the flight?

Summary

A. Choose the correct way to represent equations

More function calls \rightarrow slower
Simple codes are generally faster
B. import timeit to time commands
C. Solution methods

Plotting graphs to find solutions to equations \rightarrow intersections
Newton's method
import scipy.optimize as sco
sco.newton(...)
sco.fmin(...)
sco.minimize(...) more powerful but complicated than sco.fmin(....)

