
NumericalPython
CS101 lec15

Solving Equations

2019-11-06



Announcements

quiz: quiz15 due on Thurs 07/11
lab: lab on Fri 08/11
hw: hw07 due today
exam02 on 13/11



Roadmap



Objectives

A. Represent and solve equations in an efficient manner. =>
Similar to lec on Random and Numpy

B. Locate a function’s zeroes using a graphical method or
Newton’s method. => lec on plotting

C. Locate a function’s minima using a graphical method or
‘scipy.optimize.minimize‘.



Question
x = np.ones( 10 )
for i in range( 10 ):

try:
???

except:
print( ’Error on step %d.’%i )
continue

Which of the following candidates for ??? would not produce
an error message?

A x += x[ i+1 ]
B x[ i ] /= 0
C x[ -i-1 ] = sum( x[ :i ] )
D x[ 10-i ] = sum( x[ :i ] )



Question
x = np.ones( 10 )
for i in range( 10 ):

try:
???

except:
print( ’Error on step %d.’%i )
continue

Which of the following candidates for ??? would not produce
any error message?

A x += x[ i+1 ] index error
B x[ i ] /= 0 ⋆(surprise! numpy can handle)
C x[ -i-1 ] = sum( x[ :i ] ) ⋆

D x[ 10-i ] = sum( x[ :i ] ) index error



Equations

Equations



Equations

Equations 1/31

How do we represent equations on computers?

A. As a function
B. Write some expressions
C. Write as a series
D. Write as symbolic terms (in later lectures)
... (more)
1. In other words, we convert the equation into something
that can be calculated. We want numbers out of them.
2. Many times we represent the function as a pair of
arrays, x and y (like for plotting).
3. We can also represent equations using symbols from
the library sympy, (later lectures).



Equations

Equations 1/31

How do we represent equations on computers?

A. As a function
B. Write some expressions
C. Write as a series
D. Write as symbolic terms (in later lectures)
... (more)

1. In other words, we convert the equation into something
that can be calculated. We want numbers out of them.
2. Many times we represent the function as a pair of
arrays, x and y (like for plotting).
3. We can also represent equations using symbols from
the library sympy, (later lectures).



Equations

Equations 1/31

How do we represent equations on computers?

A. As a function
B. Write some expressions
C. Write as a series
D. Write as symbolic terms (in later lectures)
... (more)
1. In other words, we convert the equation into something
that can be calculated. We want numbers out of them.

2. Many times we represent the function as a pair of
arrays, x and y (like for plotting).
3. We can also represent equations using symbols from
the library sympy, (later lectures).



Equations

Equations 1/31

How do we represent equations on computers?

A. As a function
B. Write some expressions
C. Write as a series
D. Write as symbolic terms (in later lectures)
... (more)
1. In other words, we convert the equation into something
that can be calculated. We want numbers out of them.
2. Many times we represent the function as a pair of
arrays, x and y (like for plotting).
3. We can also represent equations using symbols from
the library sympy, (later lectures).



Equations

Equations 2/31

Suppose you wish to evaluate the function:

y = a sin3 x+ b sin2 x+ c sin x+ d

On a computer, which way is better?

A. y = a*sin(x)**3 + b*sin(x)**2 + c*sin(x) + d

B. t = sin(x)
y = a*t**3 + b*t**2 + c*t + d

The first way takes three times longer!
sin is calculated every single time it is used.



Equations

Equations 2/31

Suppose you wish to evaluate the function:

y = a sin3 x+ b sin2 x+ c sin x+ d

On a computer, which way is better?

A. y = a*sin(x)**3 + b*sin(x)**2 + c*sin(x) + d

B. t = sin(x)
y = a*t**3 + b*t**2 + c*t + d

The first way takes three times longer!
sin is calculated every single time it is used.



Equations

Equations 2/31

Suppose you wish to evaluate the function:

y = a sin3 x+ b sin2 x+ c sin x+ d

On a computer, which way is better?

A. y = a*sin(x)**3 + b*sin(x)**2 + c*sin(x) + d

B. t = sin(x)
y = a*t**3 + b*t**2 + c*t + d

The first way takes three times longer!
sin is calculated every single time it is used.



Equations

Equations 3/31

What about calculating π? Which is faster?
A. The Monte Carlo method?
B. Series solution?

π

4
= +1− 1

3
+

1

5
− 1

7
+

1

9
− 1

11
+

1

13
− 1

15
, ...



π usingMonteCarlo

Equations 4/31

import numpy.random as npr
def mc_pi( n ):
xy = npr.rand( n,2 ) * 2 - 1
n_circle = 0
for pair in xy:
........

return estimate



π usingSeries summation

Equations 5/31

def series_pi( n ):
result = 0
for k in range( 1,n ):
term = ( ( -1 ) ** ( k+1 ) ) / ( 2 * k - 1 )
result += term

return result*4



Equations

Equations 6/31

Which way is more efficient computationally?

The series solution is much better, and other better ways
may exist.
We can quantify this if we can compare algorithm.
How to quantify?



Equations

Equations 6/31

Which way is more efficient computationally?
The series solution is much better, and other better ways
may exist.
We can quantify this if we can compare algorithm.
How to quantify?



Codeperformance

Equations 7/31

In order to compare algorithms, we need a way to measure
a code’s runtime (called “wallclock time”).

timeit module provides three ways to time your code:
» import timeit
A. Interpreter: timeit.timeit(code,
number=10000)

i. » timeit.timeit(’some code as
string here’, number=10000) or
ii. » code = śome code but as a string
́» timeit.timeit(code, number=10000)
or
iii. » timeit.timeit(code, setup =
optional, number=10000)

number = the number of times to run to get an
average time
setup = setup python before running code. e.g.,
setup = import math



Codeperformance

Equations 7/31

In order to compare algorithms, we need a way to measure
a code’s runtime (called “wallclock time”).
timeit module provides three ways to time your code:

» import timeit
A. Interpreter: timeit.timeit(code,
number=10000)

i. » timeit.timeit(’some code as
string here’, number=10000) or
ii. » code = śome code but as a string
́» timeit.timeit(code, number=10000)
or
iii. » timeit.timeit(code, setup =
optional, number=10000)

number = the number of times to run to get an
average time
setup = setup python before running code. e.g.,
setup = import math



Codeperformance

Equations 7/31

In order to compare algorithms, we need a way to measure
a code’s runtime (called “wallclock time”).
timeit module provides three ways to time your code:

» import timeit
A. Interpreter: timeit.timeit(code,
number=10000)

i. » timeit.timeit(’some code as
string here’, number=10000) or
ii. » code = śome code but as a string
́» timeit.timeit(code, number=10000)
or
iii. » timeit.timeit(code, setup =
optional, number=10000)

number = the number of times to run to get an
average time
setup = setup python before running code. e.g.,
setup = import math



Codeperformance

Equations 7/31

In order to compare algorithms, we need a way to measure
a code’s runtime (called “wallclock time”).
timeit module provides three ways to time your code:

» import timeit
A. Interpreter: timeit.timeit(code,
number=10000)

i. » timeit.timeit(’some code as
string here’, number=10000) or
ii. » code = śome code but as a string
́» timeit.timeit(code, number=10000)
or
iii. » timeit.timeit(code, setup =
optional, number=10000)

number = the number of times to run to get an
average time
setup = setup python before running code. e.g.,
setup = import math



Codeperformance

Equations 7/31

In order to compare algorithms, we need a way to measure
a code’s runtime (called “wallclock time”).
timeit module provides three ways to time your code:

» import timeit
A. Interpreter: timeit.timeit(code,
number=10000)

i. » timeit.timeit(’some code as
string here’, number=10000) or
ii. » code = śome code but as a string
́» timeit.timeit(code, number=10000)
or
iii. » timeit.timeit(code, setup =
optional, number=10000)

number = the number of times to run to get an
average time
setup = setup python before running code. e.g.,
setup = import math



Codeperformance

Equations 8/31

import timeit
B. Jupyter notebook: %timeit codeJupyter (this is
easiest)
codeJupyter is just your def function
These commands run your code many times and return an
average time to completion.

%timeit mc_pi( 1e5 )
%timeit series_pi( 1e5 )



Codeperformance example

Equations 9/31

Jupyter:
def fib_a( n ):

sqrt_5 = 5**0.5;
p = ( 1 + sqrt_5 ) / 2;
q = 1 / p;
return int( (p**n + q**n) / sqrt_5 + 0.5 )

%timeit -n 10 fib_a(50)
-n 10 means run 10 times



Fibonacci sequence example

Equations 10/31

Fn = Fn−1 + Fn−2 F1 = F2 = 1

1 , 1 , 2 , 3 , 5 , 8 , 13 , 21 , 34 , 55 , ...

The closed-form formula for the nth Fibonacci term is:

Fn =

(
1+

√
5

2

)n
+
(

2
1+

√
5

)n

√
5 + 1

2



Fibonacci sequence example

Equations 10/31

Fn = Fn−1 + Fn−2 F1 = F2 = 1

1 , 1 , 2 , 3 , 5 , 8 , 13 , 21 , 34 , 55 , ...

The closed-form formula for the nth Fibonacci term is:

Fn =

(
1+

√
5

2

)n
+

(
2

1+
√
5

)n

√
5 + 1

2



Analytical Fibonacci

Equations 11/31

def fib_a( n ):
sqrt_5 = 5**0.5;
p = ( 1 + sqrt_5 ) / 2;
q = 1 / p;
return int( (p**n + q**n) / sqrt_5 + 0.5 )



Recursive Fibonacci

Equations 12/31

def fib_r( n ):
if n == 1 or n == 2:

return 1
else:

return fib_r( n-1 ) + fib_r( n-2 )



Comparison

Equations 13/31

%timeit fib_a( 12 )
%timeit fib_r( 12 )

On my machine, fib_a is 55 × faster than fib_r for n =
12.
Will this performance get better or worse for larger n?



Comparison

Equations 13/31

%timeit fib_a( 12 )
%timeit fib_r( 12 )

On my machine, fib_a is 55 × faster than fib_r for n =
12.
Will this performance get better or worse for larger n?



Equations - series

Equations 14/31

How do you calculate the value of sin x or exp x? or exp(−x)?

exp(−x) = 1− x+
x2

2
− x3

6
+ ...

=
x0

0!
− x1

1!
+

x2

2!
− x3

3!
+

x4

4!
+ ...

This series is well-behaved, but...



Equations - series

Equations 14/31

How do you calculate the value of sin x or exp x? or exp(−x)?

exp(−x) = 1− x+
x2

2
− x3

6
+ ...

=
x0

0!
− x1

1!
+

x2

2!
− x3

3!
+

x4

4!
+ ...

This series is well-behaved, but...



Equations - series

Equations 14/31

How do you calculate the value of sin x or exp x? or exp(−x)?

exp(−x) = 1− x+
x2

2
− x3

6
+ ...

=
x0

0!
− x1

1!
+

x2

2!
− x3

3!
+

x4

4!
+ ...

This series is well-behaved, but...



Equations - series

Equations 15/31

Intermediate terms can behave like:
if x = 10,

105

5!
=

100, 000

120
= 833.333

or
1012

12!
=

1, 000, 000, 000, 000

479, 001, 600
= 2, 087.675

Very large numbers result, leading to inefficient calculation
and possible numerical error.
Alternating negative terms will also lead to numerical
errors.
So what can we do?



Equations - series

Equations 15/31

Intermediate terms can behave like:
if x = 10,

105

5!
=

100, 000

120
= 833.333

or
1012

12!
=

1, 000, 000, 000, 000

479, 001, 600
= 2, 087.675

Very large numbers result, leading to inefficient calculation
and possible numerical error.
Alternating negative terms will also lead to numerical
errors.
So what can we do?



Equations - series

Equations 16/31

To break a big number to a combination of smaller number.
In this case, use

ex =
1

e−x

ex =
(
e

x
n

)n

Original:

e12 =
120

0!
− 121

1!
+

122

2!
− 123

3!
...+

1210

12!
+ ..

Improved:

e12 =
(
e

12
4

)4
= e3 ∗ e3 ∗ e3 ∗ e3

e3 =
30

0!
− 31

1!
+

32

2!
− 33

3!
...+

310

12!
+ ...

Second one has smaller numbers to divide



Question

Equations 17/31

Suppose that you wish to evaluate the function:

t(x) = a exp(3x) + b exp(2x) + c exp(x).

A t = a*exp(3*x) + b*exp(2*x) + c*exp(x)

B z = exp(x)
t = a*z**3 + b*z**2 + c*z + d



Question

Equations 18/31

Suppose that you wish to evaluate the function:

t(x) = a exp(3x) + b exp(2x) + c exp(x).

On a computer, which is better?

A t = a*exp(3*x) + b*exp(2*x) + c*exp(x)

B z = exp(x)
t = a*z**3 + b*z**2 + c*z + d

⋆⋆⋆



Solving Equations in x 19/31

SolvingEquations inx



Solving eqns

Solving Equations in x 20/31

Let’s consider how to find a specific solution to an
equation, a value of x for which f(x) has a desired property.
Methods:

A. Plot LHS == RHS
B. Newton’s method or variant
C. Use scipy.optimize
... (more)



Solving eqns

Solving Equations in x 20/31

Let’s consider how to find a specific solution to an
equation, a value of x for which f(x) has a desired property.
Methods:

A. Plot LHS == RHS
B. Newton’s method or variant
C. Use scipy.optimize
... (more)



Solving eqns - Plot

Solving Equations in x 21/31

The easiest way is to plot LHS v. RHS and find the
crossover point:



Solving eqns - Plot

Solving Equations in x 22/31

x2 + 5x− (2x2 − 3) = −2x2 − x

x**2 + 5*x - (2*x**2 - 3) == -2*x**2 - x

x = np.linspace( -10,10,1001 )
lhs = x**2 + 5*x - (2*x**2 - 3)
rhs = -2*x**2 - x
plt.plot( x,lhs,’r’, x,rhs,’b’ )
plt.plot( x,lhs-rhs,’g’ )

This works, but we need something better than eyeballing
it.



Solving eqns - Plot

Solving Equations in x 22/31

x2 + 5x− (2x2 − 3) = −2x2 − x

x**2 + 5*x - (2*x**2 - 3) == -2*x**2 - x

x = np.linspace( -10,10,1001 )
lhs = x**2 + 5*x - (2*x**2 - 3)
rhs = -2*x**2 - x
plt.plot( x,lhs,’r’, x,rhs,’b’ )
plt.plot( x,lhs-rhs,’g’ )

This works, but we need something better than eyeballing
it.



Solving eqns - Plot

Solving Equations in x 22/31

x2 + 5x− (2x2 − 3) = −2x2 − x

x**2 + 5*x - (2*x**2 - 3) == -2*x**2 - x

x = np.linspace( -10,10,1001 )
lhs = x**2 + 5*x - (2*x**2 - 3)
rhs = -2*x**2 - x
plt.plot( x,lhs,’r’, x,rhs,’b’ )
plt.plot( x,lhs-rhs,’g’ )

This works, but we need something better than eyeballing
it.



Solving eqns -Newton’smethod

Solving Equations in x 23/31

Newton’s method uses the function and its derivative to
locate the x-value of the zero, x∗.
The trick, of course, is that you need f ′(x) = d[f(x)]

dx

xn+1 = xn −
f(xn)
f ′(xn)

→



Solving eqns -Newton’smethod

Solving Equations in x 24/31

xn+1 = xn −
f(xn)
f ′(xn)

def dfdx( f,x,h=1e-3 ):
return ( f( x+h ) - f( x ) ) / h

def newton( f,x0,tol=1e-3 ):
d = abs( 0 - f( x0 ) )
while d > tol:

x0 = x0 - f( x0 ) / dfdx( f,x0 )
d = abs( 0 - f( x0 ) )

return ( x0,f( x0 ) )



Questions

Solving Equations in x 25/31

For
cos x+ 2 = x3 − x2

What are the parameters needed for newton(
f,x0,tol=1e-3 ) to work?

def f(x):
import numpy as np
return (( np.cos( x ) + 2 ) - ( x**3 - x**2 ))

x0 = any number

newton( f, x0, tol=1e-3 )



Questions

Solving Equations in x 25/31

For
cos x+ 2 = x3 − x2

What are the parameters needed for newton(
f,x0,tol=1e-3 ) to work?

def f(x):
import numpy as np
return (( np.cos( x ) + 2 ) - ( x**3 - x**2 ))

x0 = any number

newton( f, x0, tol=1e-3 )



Solving eqns - scipy.optimize

Solving Equations in x 26/31

import scipy.optimize
There is a ready-made Newton’s method in scipy.optimize
> scipy.optimize.newton( f,x0 )
We can also find minima using
> scipy.optimize.fmin( f,x0 ).

This requires you to be clever in preparing f, you may
have to manipulate your function.



Solving eqns - scipy.optimize

Solving Equations in x 26/31

import scipy.optimize
There is a ready-made Newton’s method in scipy.optimize
> scipy.optimize.newton( f,x0 )
We can also find minima using
> scipy.optimize.fmin( f,x0 ).
This requires you to be clever in preparing f, you may
have to manipulate your function.



Solving eqns - scipy.optimize

Solving Equations in x 27/31

import matplotlib.pyplot as plt
import numpy as np
import scipy.optimize

def f( x ):
return x**2 + x - 1

x = np.linspace( -10,10,1000 )
xstar = scipy.optimize.fmin( f,x0=3 )

plt.plot( x,f( x ),’r--’, xstar,f( xstar ),’ro’ )
plt.show()



Solving eqns - scipy.optimize

Solving Equations in x 28/31



Optimization (Preview) 29/31

Optimization (Preview)



Optimization

Optimization (Preview) 30/31

On vacation, you purchased a range of n souvenirs of varying
weight and value. When it comes time to pack, you find that
your bag has a weight limit of 22 kg. What is the best set of
items to take on the flight?



Summary

Optimization (Preview) 31/31

A. Choose the correct way to represent equations
More function calls → slower
Simple codes are generally faster

B. import timeit to time commands
C. Solution methods

Plotting graphs to find solutions to equations →
intersections
Newton’s method
import scipy.optimize as sco
sco.newton(...)
sco.fmin(...)
sco.minimize(...) more powerful but
complicated than sco.fmin(...)


	Equations
	Solving Equations in x
	Optimization (Preview)

