
NumericalPython
CS101 lec14

Errors & Exceptions

2018-11-19

Announcements

quiz: quiz14 due on Tues 05/11
lab: lab on Fri 08/11
hw: hw07 due 06/11
exam: exam02 from lec06-13 on 13 Nov@ 8 pm

Paper Exam - MCQs + Coding Qestions

Roadmap

Objectives

Error, Errors Everywhere!
A. Explain the difference between errors, exceptions, and

bugs.
B. Identify the types of exceptions raised by Python and their

sources.
C. Use exception handling to avoid program crashes.
D. Identify why numerical (truncation) error occurs and when

it is likely to do so, including countermeasures like ‘isclose‘
and ‘allclose‘.

State review

A. All models are wrong but some are more useful!
B. Each state tells the condition of the simulation at that

particular time
C. Print() and Plot() to see what is happening

When Things Go Wrong...

WhenThingsGoWrong...

After 6 hrs still wrong...

After6hrsstillwrong...

Commonerrors and exceptions

After 6 hrs still wrong... 1/41

A SyntaxError - also parsing error. Python does not like
your structure. Missing ’:’, ’()’ etc. Displays a little ‘arrow’
pointing at the earliest point in the line where the error was
detected

B Exceptions - errors found during running
A NameError - name of function or variables not found
B TypeError - operations on different data types
C ZeroDivisionError
D FileNotFoundError
E IndexError - wrong index used
F KeyError - in dictionary
G IndentationError - wrong or no indent
H more

Commonerrors and exceptions

After 6 hrs still wrong... 1/41

A SyntaxError - also parsing error. Python does not like
your structure. Missing ’:’, ’()’ etc. Displays a little ‘arrow’
pointing at the earliest point in the line where the error was
detected

B Exceptions - errors found during running
A NameError - name of function or variables not found
B TypeError - operations on different data types
C ZeroDivisionError
D FileNotFoundError
E IndexError - wrong index used
F KeyError - in dictionary
G IndentationError - wrong or no indent
H more

Commonerrors and exceptions

After 6 hrs still wrong... 1/41

A SyntaxError - also parsing error. Python does not like
your structure. Missing ’:’, ’()’ etc. Displays a little ‘arrow’
pointing at the earliest point in the line where the error was
detected

B Exceptions - errors found during running
A NameError - name of function or variables not found

B TypeError - operations on different data types
C ZeroDivisionError
D FileNotFoundError
E IndexError - wrong index used
F KeyError - in dictionary
G IndentationError - wrong or no indent
H more

Commonerrors and exceptions

After 6 hrs still wrong... 1/41

A SyntaxError - also parsing error. Python does not like
your structure. Missing ’:’, ’()’ etc. Displays a little ‘arrow’
pointing at the earliest point in the line where the error was
detected

B Exceptions - errors found during running
A NameError - name of function or variables not found
B TypeError - operations on different data types

C ZeroDivisionError
D FileNotFoundError
E IndexError - wrong index used
F KeyError - in dictionary
G IndentationError - wrong or no indent
H more

Commonerrors and exceptions

After 6 hrs still wrong... 1/41

A SyntaxError - also parsing error. Python does not like
your structure. Missing ’:’, ’()’ etc. Displays a little ‘arrow’
pointing at the earliest point in the line where the error was
detected

B Exceptions - errors found during running
A NameError - name of function or variables not found
B TypeError - operations on different data types
C ZeroDivisionError

D FileNotFoundError
E IndexError - wrong index used
F KeyError - in dictionary
G IndentationError - wrong or no indent
H more

Commonerrors and exceptions

After 6 hrs still wrong... 1/41

A SyntaxError - also parsing error. Python does not like
your structure. Missing ’:’, ’()’ etc. Displays a little ‘arrow’
pointing at the earliest point in the line where the error was
detected

B Exceptions - errors found during running
A NameError - name of function or variables not found
B TypeError - operations on different data types
C ZeroDivisionError
D FileNotFoundError

E IndexError - wrong index used
F KeyError - in dictionary
G IndentationError - wrong or no indent
H more

Commonerrors and exceptions

After 6 hrs still wrong... 1/41

A SyntaxError - also parsing error. Python does not like
your structure. Missing ’:’, ’()’ etc. Displays a little ‘arrow’
pointing at the earliest point in the line where the error was
detected

B Exceptions - errors found during running
A NameError - name of function or variables not found
B TypeError - operations on different data types
C ZeroDivisionError
D FileNotFoundError
E IndexError - wrong index used

F KeyError - in dictionary
G IndentationError - wrong or no indent
H more

Commonerrors and exceptions

After 6 hrs still wrong... 1/41

A SyntaxError - also parsing error. Python does not like
your structure. Missing ’:’, ’()’ etc. Displays a little ‘arrow’
pointing at the earliest point in the line where the error was
detected

B Exceptions - errors found during running
A NameError - name of function or variables not found
B TypeError - operations on different data types
C ZeroDivisionError
D FileNotFoundError
E IndexError - wrong index used
F KeyError - in dictionary

G IndentationError - wrong or no indent
H more

Commonerrors and exceptions

After 6 hrs still wrong... 1/41

A SyntaxError - also parsing error. Python does not like
your structure. Missing ’:’, ’()’ etc. Displays a little ‘arrow’
pointing at the earliest point in the line where the error was
detected

B Exceptions - errors found during running
A NameError - name of function or variables not found
B TypeError - operations on different data types
C ZeroDivisionError
D FileNotFoundError
E IndexError - wrong index used
F KeyError - in dictionary
G IndentationError - wrong or no indent

H more

Commonerrors and exceptions

After 6 hrs still wrong... 1/41

A SyntaxError - also parsing error. Python does not like
your structure. Missing ’:’, ’()’ etc. Displays a little ‘arrow’
pointing at the earliest point in the line where the error was
detected

B Exceptions - errors found during running
A NameError - name of function or variables not found
B TypeError - operations on different data types
C ZeroDivisionError
D FileNotFoundError
E IndexError - wrong index used
F KeyError - in dictionary
G IndentationError - wrong or no indent
H more

TypesofBugs

After 6 hrs still wrong... 2/41

A few working definitions:
Errors—errors which cause the program to be
unrunnable (cannot be handled at run time). In
Python, it is mostly Syntax errors.

Exceptions—unusual behavior duing running
(although not necessarily unexpected behavior,
particularly in Python). Means there is no Syntax
Error. Python liked your structure, run your code but
found non-logic errors.

Bugs—include errors and exceptions, but also
miswritten, ambiguous, or incorrect code which in fact
runs but does not advertise its miscreancy (i.e., does
not tell you that anything is wrong)

TypesofBugs

After 6 hrs still wrong... 2/41

A few working definitions:
Errors—errors which cause the program to be
unrunnable (cannot be handled at run time). In
Python, it is mostly Syntax errors.

Exceptions—unusual behavior duing running
(although not necessarily unexpected behavior,
particularly in Python). Means there is no Syntax
Error. Python liked your structure, run your code but
found non-logic errors.

Bugs—include errors and exceptions, but also
miswritten, ambiguous, or incorrect code which in fact
runs but does not advertise its miscreancy (i.e., does
not tell you that anything is wrong)

TypesofBugs

After 6 hrs still wrong... 2/41

A few working definitions:
Errors—errors which cause the program to be
unrunnable (cannot be handled at run time). In
Python, it is mostly Syntax errors.

Exceptions—unusual behavior duing running
(although not necessarily unexpected behavior,
particularly in Python). Means there is no Syntax
Error. Python liked your structure, run your code but
found non-logic errors.

Bugs—include errors and exceptions, but also
miswritten, ambiguous, or incorrect code which in fact
runs but does not advertise its miscreancy (i.e., does
not tell you that anything is wrong)

Commonexceptions

After 6 hrs still wrong... 3/41

A. SyntaxError—check missing colons or parentheses
B. NameError—check for typos, function definitions
C. TypeError—check variable types
D. ValueError—check function parameters
E. FileNotFoundError—check that files exist

Commonexceptions

After 6 hrs still wrong... 4/41

A. IndexError—don’t reference nonexistent list elements
B. KeyError—similar to an IndexError, but for dictionaries
C. ZeroDivisionError
D. IndentationError—check that spaces and tabs aren’t

mixed

Question

After 6 hrs still wrong... 5/41

calculate squares
d = list(range(10))
while i < 10:

d[i] = d[i] ** 2.0
i += 1

Which error would this code produce?

A SyntaxError
B IndexError
C ValueError
D NameError

Question

After 6 hrs still wrong... 6/41

calculate squares
d = list(range(10))
while i < 10:

d[i] = d[i] ** 2.0
i += 1

Which error would this code produce?

A SyntaxError
B IndexError
C ValueError
D NameError ⋆

Question

After 6 hrs still wrong... 7/41

Which of the following would produce TypeError?

A ’2’ + 2
B 2 / 0
C 2e8 + (1+0j)
D ’2’ * 2

Question

After 6 hrs still wrong... 8/41

Which of the following would produce TypeError?

A ’2’ + 2 ⋆

B 2 / 0
C 2e8 + (1+0j)
D ’2’ * 2

Programstack

After 6 hrs still wrong... 9/41

Traceback—listing of function calls on the stack at the
time the exception arises

def fun1():
fun2()

def fun2():
fun3()

def fun3():
assert 1 == 2

fun1()

Programstack

After 6 hrs still wrong... 9/41

Traceback—listing of function calls on the stack at the
time the exception arises

def fun1():
fun2()

def fun2():
fun3()

def fun3():
assert 1 == 2

fun1()

Programstack

After 6 hrs still wrong... 10/41

fun1()

Handling Exceptions 11/41

HandlingExceptions

Exception handling - Try

Handling Exceptions 12/41

Most of the time, we do not want errors to happen.

But it happens
Next best thing is we do not want our program to crash
(stop executing)!
We can tell Python to try a block of code, and it will run
normally except if something goes wrong.

calculate square roots
d = list(range(10))
r = []
for i in d:

try:
r[i] = sqrt(d[i])

except:
print(’An error occurred.’)
break

Exception handling - Try

Handling Exceptions 12/41

Most of the time, we do not want errors to happen.
But it happens

Next best thing is we do not want our program to crash
(stop executing)!
We can tell Python to try a block of code, and it will run
normally except if something goes wrong.

calculate square roots
d = list(range(10))
r = []
for i in d:

try:
r[i] = sqrt(d[i])

except:
print(’An error occurred.’)
break

Exception handling - Try

Handling Exceptions 12/41

Most of the time, we do not want errors to happen.
But it happens
Next best thing is we do not want our program to crash
(stop executing)!

We can tell Python to try a block of code, and it will run
normally except if something goes wrong.

calculate square roots
d = list(range(10))
r = []
for i in d:

try:
r[i] = sqrt(d[i])

except:
print(’An error occurred.’)
break

Exception handling - Try

Handling Exceptions 12/41

Most of the time, we do not want errors to happen.
But it happens
Next best thing is we do not want our program to crash
(stop executing)!
We can tell Python to try a block of code, and it will run
normally except if something goes wrong.

calculate square roots
d = list(range(10))
r = []
for i in d:

try:
r[i] = sqrt(d[i])

except:
print(’An error occurred.’)
break

Exception handling - Try

Handling Exceptions 12/41

Most of the time, we do not want errors to happen.
But it happens
Next best thing is we do not want our program to crash
(stop executing)!
We can tell Python to try a block of code, and it will run
normally except if something goes wrong.

calculate square roots
d = list(range(10))
r = []
for i in d:

try:
r[i] = sqrt(d[i])

except:
print(’An error occurred.’)
break

Try

Handling Exceptions 13/41

The advantage: you can handle the error and execution
can proceed normally.
The disadvantage: the traceback doesn’t appear
automatically.

This also doesn’t guard against errors or bugs which don’t
raise an exception: like your logic errors

Try

Handling Exceptions 13/41

The advantage: you can handle the error and execution
can proceed normally.
The disadvantage: the traceback doesn’t appear
automatically.
This also doesn’t guard against errors or bugs which don’t
raise an exception: like your logic errors

Try structure

Handling Exceptions 14/41

try:
the main code
if an error occurs, it goes into ”except:”

immediately
except:

an error occurs
else: (optional)

if no error occurs
finally: (optional)

this always happens, error or no error

Note: except: or except XXXError: both will work.
XXXError is the list of errors/exceptions from Python

Question

Handling Exceptions 15/41

denom = 0
while True:

try:
Read int from console/prompt.
denom = input()

Use as denominator.
i = 1 / float(denom)
print(i)

except:
print(”non-numeric value entered”)

else:
print(i, ”again”)

finally:
if denom == ’q’: break

Examples

Handling Exceptions 16/41

If we lose the information on what and where went wrong,
our debugging step may not be appropriate.

What could have gone wrong in the code below?

try:
filename = ’spring.data’
datafile = open(filename,’r’)
data = datafile.readlines()

except:
print(’Something went wrong.’)

Examples

Handling Exceptions 16/41

If we lose the information on what and where went wrong,
our debugging step may not be appropriate.
What could have gone wrong in the code below?

try:
filename = ’spring.data’
datafile = open(filename,’r’)
data = datafile.readlines()

except:
print(’Something went wrong.’)

Bespecific!!!

Handling Exceptions 17/41

Use try at the finest degree of precision you can:

filename = ’spring.data’
try:

datafile = open(filename,’r’)
except:

print(’Unable to open file ”%s”.’%filename)

is better than

filename = ’spring.data’
try:

datafile = open(filename,’r’)
for line in data:

...
except:

...

Bespecific!!!

Handling Exceptions 17/41

Use try at the finest degree of precision you can:

filename = ’spring.data’
try:

datafile = open(filename,’r’)
except:

print(’Unable to open file ”%s”.’%filename)

is better than

filename = ’spring.data’
try:

datafile = open(filename,’r’)
for line in data:

...
except:

...

Question 1

Handling Exceptions 18/41

a = [’a’,’n’,’y’]
try:

a[3] = ’.’
except IndexError:

pass # does nothing
a[0][0] = ’b’

Which uncaught error will cause this code to terminate?

A IndexError
B TypeError
C KeyError

Question 1

Handling Exceptions 19/41

a = [’a’,’n’,’y’]
try:

a[3] = ’.’
except IndexError:

pass # does nothing
a[0][0] = ’b’

Which uncaught error will cause this code to terminate?

A IndexError
B TypeError ⋆(where?)
C KeyError

Question 2

Handling Exceptions 20/41

???
try:

a[4] *= 2
except TypeError:

pass
else:

print(’No error arose.’)

Which line replacing the ??? will raise an uncaught error?

A a = ’12345’
B a = [1,2,3,4]
C a = (1,2,3,4,5)
D a = np.ones((10,))

Question 2

Handling Exceptions 21/41

???
try:

a[4] *= 2
except TypeError:

pass
finally:

print(’No error arose.’)

Which line replacing the ??? will raise an uncaught error?

A a = ’12345’
B a = [1,2,3,4] ⋆(why?)
C a = (1,2,3,4,5)
D a = np.ones((10,))

Numerical Error ??? 22/41

NumericalError???

How to compare floats?

Numerical Error ??? 23/41

How to compare floats?

Numerical Error ??? 24/41

How to compare floats?

Numerical Error ??? 24/41

How to compare floats?

Numerical Error ??? 25/41

floats in binary

Numerical Error ??? 26/41

floats in binary

Numerical Error ??? 26/41

floats in binary?

Numerical Error ??? 27/41

floats in binary?

Numerical Error ??? 28/41

How to compare floats?

Numerical Error ??? 29/41

How to compare floats?

Numerical Error ??? 30/41

How to compare floats?

Numerical Error ??? 31/41

How to compare floats?

Numerical Error ??? 32/41

from math or numpy,
math.isclose(a, b, rel_tol=1e-05, abs_tol=1e-08)

np.isclose(a, b, rtol=1e-05, atol=1e-08)
np.allclose(a, b, rtol=1e-05, atol=1e-08)
rtol = relative tolerance => abs(a - b) / abs(b)
atol = absolute rolerance => abs(a - b)

> math.isclose() compares numbers
> np.isclose() compares numbers or individual
numbers in an array or list or tuple. It returns an array of
bool if it compares an array or list or tuple.
> np.allclose() same as np.isclose() but returns
only a single bool. Any false result from the array makes
np.allclose() to return false

Debugging 33/41

Debugging

Debugging

Debugging 34/41

”Debugging is twice as hard as writing the
code in the first place. Therefore, if you
write the code as cleverly as possible, you
are, by definition, not smart enough to debug
it.”

”The most effective debugging tool is still
careful thought, coupled with judiciously
placed print statements.”

”Controlling complexity is the essence of
computer programming.”
— Brian Kernighan

Debugging

Debugging 34/41

”Debugging is twice as hard as writing the
code in the first place. Therefore, if you
write the code as cleverly as possible, you
are, by definition, not smart enough to debug
it.”

”The most effective debugging tool is still
careful thought, coupled with judiciously
placed print statements.”

”Controlling complexity is the essence of
computer programming.”
— Brian Kernighan

Debugging

Debugging 34/41

”Debugging is twice as hard as writing the
code in the first place. Therefore, if you
write the code as cleverly as possible, you
are, by definition, not smart enough to debug
it.”

”The most effective debugging tool is still
careful thought, coupled with judiciously
placed print statements.”

”Controlling complexity is the essence of
computer programming.”
— Brian Kernighan

Debugging strategies

Debugging 35/41

When do things go wrong?

Three categories of problems:
A. before the code runs
B. while the code is running
C. in the results

Debugging strategies

Debugging 35/41

When do things go wrong?
Three categories of problems:
A. before the code runs
B. while the code is running
C. in the results

Debugging strategies

Debugging 36/41

A. Start early.

B. Read the problem statement carefully.
C. Chart the flow of the program.
D. Add print statements.
E. Break the program down into functions.
F. Document functions before writing them.
G. Explain it to someone else.
H. Make no assumptions! If your thinking is not precise, your

code will not be precise.
I. Start over from scratch. Take a fresh look at the problem.

Debugging strategies

Debugging 36/41

A. Start early.
B. Read the problem statement carefully.

C. Chart the flow of the program.
D. Add print statements.
E. Break the program down into functions.
F. Document functions before writing them.
G. Explain it to someone else.
H. Make no assumptions! If your thinking is not precise, your

code will not be precise.
I. Start over from scratch. Take a fresh look at the problem.

Debugging strategies

Debugging 36/41

A. Start early.
B. Read the problem statement carefully.
C. Chart the flow of the program.

D. Add print statements.
E. Break the program down into functions.
F. Document functions before writing them.
G. Explain it to someone else.
H. Make no assumptions! If your thinking is not precise, your

code will not be precise.
I. Start over from scratch. Take a fresh look at the problem.

Debugging strategies

Debugging 36/41

A. Start early.
B. Read the problem statement carefully.
C. Chart the flow of the program.
D. Add print statements.

E. Break the program down into functions.
F. Document functions before writing them.
G. Explain it to someone else.
H. Make no assumptions! If your thinking is not precise, your

code will not be precise.
I. Start over from scratch. Take a fresh look at the problem.

Debugging strategies

Debugging 36/41

A. Start early.
B. Read the problem statement carefully.
C. Chart the flow of the program.
D. Add print statements.
E. Break the program down into functions.

F. Document functions before writing them.
G. Explain it to someone else.
H. Make no assumptions! If your thinking is not precise, your

code will not be precise.
I. Start over from scratch. Take a fresh look at the problem.

Debugging strategies

Debugging 36/41

A. Start early.
B. Read the problem statement carefully.
C. Chart the flow of the program.
D. Add print statements.
E. Break the program down into functions.
F. Document functions before writing them.

G. Explain it to someone else.
H. Make no assumptions! If your thinking is not precise, your

code will not be precise.
I. Start over from scratch. Take a fresh look at the problem.

Debugging strategies

Debugging 36/41

A. Start early.
B. Read the problem statement carefully.
C. Chart the flow of the program.
D. Add print statements.
E. Break the program down into functions.
F. Document functions before writing them.
G. Explain it to someone else.

H. Make no assumptions! If your thinking is not precise, your
code will not be precise.

I. Start over from scratch. Take a fresh look at the problem.

Debugging strategies

Debugging 36/41

A. Start early.
B. Read the problem statement carefully.
C. Chart the flow of the program.
D. Add print statements.
E. Break the program down into functions.
F. Document functions before writing them.
G. Explain it to someone else.
H. Make no assumptions! If your thinking is not precise, your

code will not be precise.

I. Start over from scratch. Take a fresh look at the problem.

Debugging strategies

Debugging 36/41

A. Start early.
B. Read the problem statement carefully.
C. Chart the flow of the program.
D. Add print statements.
E. Break the program down into functions.
F. Document functions before writing them.
G. Explain it to someone else.
H. Make no assumptions! If your thinking is not precise, your

code will not be precise.
I. Start over from scratch. Take a fresh look at the problem.

Style 37/41

Style

Style

Style 38/41

Document your code!
Every function should have a docstring.

def warning(msg):
’’’Display a warning message.’’’
print(’Warning: %s’%msg)

Docstrings explain what the function does and what its
parameters are.
They always are triple-quoted strings on the first line of the
function block.

help(warning)

Style

Style 38/41

Document your code!
Every function should have a docstring.

def warning(msg):
’’’Display a warning message.’’’
print(’Warning: %s’%msg)

Docstrings explain what the function does and what its
parameters are.
They always are triple-quoted strings on the first line of the
function block.

help(warning)

Style

Style 38/41

Document your code!
Every function should have a docstring.

def warning(msg):
’’’Display a warning message.’’’
print(’Warning: %s’%msg)

Docstrings explain what the function does and what its
parameters are.
They always are triple-quoted strings on the first line of the
function block.

help(warning)

Style

Style 39/41

Use descriptive variable names.

Why do we write comments?
For the person who next looks at the code! Also for YOU
after you wrote the code a long time ago!
x_vals = [0,0.1,0.2,0.3,0.4] # meters
faraday = 96485.3328959 # coulombs,

electric charge

Style

Style 39/41

Use descriptive variable names.
Why do we write comments?

For the person who next looks at the code! Also for YOU
after you wrote the code a long time ago!
x_vals = [0,0.1,0.2,0.3,0.4] # meters
faraday = 96485.3328959 # coulombs,

electric charge

Style

Style 39/41

Use descriptive variable names.
Why do we write comments?
For the person who next looks at the code! Also for YOU
after you wrote the code a long time ago!
x_vals = [0,0.1,0.2,0.3,0.4] # meters
faraday = 96485.3328959 # coulombs,

electric charge

Style

Style 40/41

Use functions to structure code.
This makes code more readable (and debuggable!).

Summary

Style 41/41

A) List of different errors and exceptions (NameError,
SyntaxError etc)

B) The source of these errors and how we can avoid them
C) Use try structure - at the finest degree of precision that

you can
D) The source of numerical error for float

	When Things Go Wrong...
	After 6 hrs still wrong...
	Handling Exceptions
	Numerical Error ???
	Debugging
	Style

