
NumericalPython
CS101 lec13

Random Numbers

2019-10-30

Announcements

quiz: quiz13 due on Thurs 31/10
lab: lab06 on Fri 01/11
hw: hw07 due 06/11
exam: exam02 from lec06-13 on 13 Nov@ 8.00pm
MCQ, short question / programming

Roadmap

Plt Recap

PltRecap

Plt.plot

Plt Recap

Which is correct?
plt.plot(x,y,’ro’)
plt.plot(x,y,color=’red’,linestyle=’o’)
plt.plot(x,y,color=’red’, linestyle=’–’)

Plt.plot

Plt Recap

Which is correct?
plt.plot(x,y,’ro’) ⋆⋆⋆

plt.plot(x,y,color=’red’,linestyle=’o’)
plt.plot(x,y,color=’red’, linestyle=’–’) ⋆⋆⋆

State Recap

StateRecap

Modeling

State Recap

1. Model a experiment/process in computer without
performinng the REAL physical experiment and see what
happens during this process.
2. We used the example of releasing a ball from the table.
Through modeling, we can ask

a. When will the ball hit the ground?
b. When and where it will reach the highest speed?
c. How many times can it bounce after hitting the
ground?
d. others....

3. We can solve these questions using:
1. Analytical Solution

Modeling

State Recap

A Use analytical equation (if available).

y(t) = y0 + v0t+
a
2
t2

y0 = 1

v0 = 0

a = −9.8

subject to
y(t) ≥ 0

Modeling

State Recap

Input
Parameters of simulation
n = 100 # number of data points to plot
start = 0.0 # start time, s
end = 1.0 # ending time, s
a = -9.8 # acceleration, m*s**-2

State variable initialization
t = np.linspace(start,end,n+1) # time, s

Model
y = 1.0 + a/2 * t**2

for i in range(1,n+1):
if y[i] <= 0: # ball has hit the ground

y[i] = 0
... more needed...

Modeling

State Recap

1. Model a experiment/process in computer without
performinng the REAL physical experiment and see what
happens during this process.
2. We used the example of releasing a ball from the table.
Through modeling, we can ask

a. When will the ball hit the ground?
b. When and where it will reach the highest speed?
c. How many times can it bounce after hitting the
ground?
d. others....

3. We can solve these questions using:
1. Analytical Solution
2. Finite difference

Modeling

State Recap

We can use finite difference is that in this problem as:

vn(t) =
dyn
dt

≈ yn+1 − yn
tn+1 − tn

→ yn+1 = yn + vn (tn+1 − tn) (eqn 1)

a =
dvn
dt

≈ vn+1 − vn
tn+1 − tn

→ vn+1 = vn + a (tn+1 − tn) (eqn 2)

vn=0 = 0 yn=0 = 1 a = −9.8

subject to
y(t) ≥ 0

We can put
vn+1 (eqn 2) into vn (eqn 1)

to get the ”next”
yn+1 at n = n+ 1

Modeling

State Recap

Input
Parameters of simulation
n = 100 # number of data points to plot
start = 0.0 # start time, s
end = 1.0 # ending time, s
a = -9.8 # acceleration, m*s**-2

State variable initialization
t = np.linspace(start,end,n+1) # time, s
y = np.zeros(n+1) # height, m
v = np.zeros(n+1) # velocity, m*s**-1
y[0] = 1.0 # initial condition, m

Model
for i in range(1,n+1):

v[i] = v[i-1] + a*(t[i]-t[i-1])
y[i] = y[i-1] + v[i] * (t[i]-t[i-1])

if y[i] <= 0: # ball has hit the ground
v[i] = 0
y[i] = 0

...more needed...

NumericalMethods

State Recap

A. Numerical Differentiation:
Forward difference, Backward difference, and others....

I) Forward difference,
dyn
dt

≈ yn+1 − yn
tn+1 − tn

II) Backward difference,
dyn
dt

≈ yn − yn−1

tn − tn−1

Objectives

State Recap

Using Numpy and Plot (lec10 and 11):
A. Explain how random numbers are generated from

deterministic algorithms.
B. Distinguish the three basic random distributions (uniform,

normal, integer) by sight.
C. Understand when to apply each of the three basic random

distributions in constructing models and simulations
(uniform, discrete, normal).

Randomness

Randomness

Randomness

Randomness 1/37

A philosophical question: what is randomness?
What are some sources of true randomness?

Consider the following two sequences:

7 8 5 3 9 8 1 6 3 3 9 7 4 4 8 3 0 9 6 1 5 6 6 0 8 4 ...

+1,−1

3
,+

1

5
,−1

7
,+

1

9
,− 1

11
,+

1

13
,− 1

15
, ...

These are derived from the same rule (π/4)—but one
seems “random” to us.

Randomness

Randomness 1/37

A philosophical question: what is randomness?
What are some sources of true randomness?
Consider the following two sequences:

7 8 5 3 9 8 1 6 3 3 9 7 4 4 8 3 0 9 6 1 5 6 6 0 8 4 ...

+1,−1

3
,+

1

5
,−1

7
,+

1

9
,− 1

11
,+

1

13
,− 1

15
, ...

These are derived from the same rule (π/4)—but one
seems “random” to us.

Randomness

Randomness 1/37

A philosophical question: what is randomness?
What are some sources of true randomness?
Consider the following two sequences:

7 8 5 3 9 8 1 6 3 3 9 7 4 4 8 3 0 9 6 1 5 6 6 0 8 4 ...

+1,−1

3
,+

1

5
,−1

7
,+

1

9
,− 1

11
,+

1

13
,− 1

15
, ...

These are derived from the same rule (π/4)—but one
seems “random” to us.

Randomness

Randomness 2/37

Pseudo-random numbers come from computer formulae.

The formula uses a seed (often the system clock time) to
start the sequence.

It then returns a new number unpredictable to you (but
predictable to the formula!) each time you query the
function.

This means that anybody who has the seed value will be
able to generate the same sequence of random numbers.

Not-so-random random number!

Randomness

Randomness 2/37

Pseudo-random numbers come from computer formulae.

The formula uses a seed (often the system clock time) to
start the sequence.

It then returns a new number unpredictable to you (but
predictable to the formula!) each time you query the
function.

This means that anybody who has the seed value will be
able to generate the same sequence of random numbers.
Not-so-random random number!

Randomness fromnumpy

Randomness 3/37

NumPy uses the Mersenne twister, based on prime
number distributions (but you don’t need to know this).

Dozens of distributions are available—let’s see a few.

Randomness

Randomness 4/37

There are different ways a number can be random, or
distributed.

Discrete distribution

Randomness 5/37

randint returns a random (pseudo-random) integer in
a range (which works the same as range).

np.random.randint(10) #random int between [0,10)

np.random.randint(1,7) #random int between [1,7)

np.random.randint(0,10, size=(5,5))

np.random.randint(0,10, size=(5,5)) + 1

Discrete distribution

Randomness 6/37

Uniformdistribution

Randomness 7/37

uniform returns a random float in the range [0, 1).
This is called a uniform random distribution.

np.random.uniform() # random number, [0,1)
np.random.uniform(a,b) # random number, [a,b)

np.random.uniform(size=(4,3)) # in array

x = np.random.uniform(size=(10000,))
or
x = np.random.uniform(size=10000)

Uniformdistribution

Randomness 8/37

Uniformdistribution

Randomness 9/37

uniform returns a random float in the range [0, 1).
This is called a uniform random distribution.

x = np.random.uniform(size=(10000,))
plt.hist(x,bins=10)
plt.show()

Normal distribution

Randomness 10/37

normal returns a random float selected from the normal
distribution with mean 0 and standard deviation 1.

np.random.normal() # random normal number

np.random.normal() + 1.0 # mean 1.0
np.random.normal(loc=1.0)

(np.random.normal()) * 4 # variance 4.0
np.random.normal(scale=4.0)

Normal distribution

Randomness 11/37

Normal distribution

Randomness 12/37

normal returns a random number selected from the
normal distribution with mean 0 and variance 1.

x = np.random.normal(size=(10000,))
plt.hist(x,bins=20)
plt.show()

hist

Randomness 13/37

hist (matplotlib) creates a histogram.
Histograms plot the number of times a value occurs in a
data set.

It COUNTS the number of times a value occurs
Then PLOTS it

hist

Randomness 14/37

hist (matplotlib) creates a histogram.
Histograms plot the number of times a value occurs in a
data set.

x = np.random.randint(0,100,size=(10000,1))
plt.hist(x)
plt.show()

Randomness

Randomness 15/37

Question 1

Randomness 16/37

Which command will generate

array([[21, 17],
[19, 3],
[7, 14]])

A. np.random.randint(1, 23)
B. np.random.normal(size=(3, 2)) * 10 + 3
C. np.random.randint(1, 23, size=(3, 2))
D. np.random.normal() * 10 + 3
E. np.random.uniform(1, 23, size=(3, 2))

Question 1

Randomness 17/37

Which command will generate

array([[21, 17],
[19, 3],
[7, 14]])

A. np.random.randint(1, 23)
B. np.random.normal(size=(3, 2)) * 10 + 3
C. np.random.randint(1, 23, size=(3, 2)) ⋆⋆
D. np.random.normal() * 10 + 3
E. np.random.uniform(1, 23, size=(3, 2))

Question 2

Randomness 18/37

x = np.random.randint(0, 10, size=10000)
count = [0]*10
for i in x:

count[i] += 1

print(count)
plt.hist(count, bins=10)
plt.show()

If count = [973, 1077, 973, 981, 1015, 950, 994, 1010, 997,
1030], What will be plotted?

Question 2

Randomness 18/37

x = np.random.randint(0, 10, size=10000)
count = [0]*10
for i in x:

count[i] += 1

print(count)
plt.hist(count, bins=10)
plt.show()

If count = [973, 1077, 973, 981, 1015, 950, 994, 1010, 997,
1030], What will be plotted?

Question 2

Randomness 19/37

If count = [973, 1077, 973, 981, 1015, 950, 994, 1010, 997,
1030], What will be plotted?

nope!

This! plt.hist() counts then plots!

Question 2

Randomness 19/37

If count = [973, 1077, 973, 981, 1015, 950, 994, 1010, 997,
1030], What will be plotted?

nope!

This! plt.hist() counts then plots!

Question 2

Randomness 20/37

But it is difficult to see the different bars!
Use
plt.hist(x, bins=(range(0,11)), rwidth=0.8)
> bins = the number of bins or the actual different bin intervals,
here bins = [0,1), [1,2)...[9,10), [10,11)
> rwidth =displayed bar width as a fraction of the bin width

Example -Write your first game!

Randomness 21/37

Number guessing:

import numpy as np
number = np.random.randint(10)+1
guess = input(’Guess the number between 1 and 10:’)
while int(guess) != number:
guess = input(’Nope. Try again, my grandma

can do better than you’)
print(’You did it. Ok, you are better than

my grandma. Happy?’)

np.random.choice()

Randomness 22/37

choice randomly samples a one-dimensional array or list

x = [’red’,’yellow’,’blue’,’jale’,
’ulfire’,’octarine’]

y = np.random.choice(x) # random color

ans: Any item inside the list x

np.random.choice()

Randomness 22/37

choice randomly samples a one-dimensional array or list

x = [’red’,’yellow’,’blue’,’jale’,
’ulfire’,’octarine’]

y = np.random.choice(x) # random color

ans: Any item inside the list x

np.random.choice()

Randomness 23/37

choice by default samples with replacement - it can
select the same item again the next time!
choice randomly samples a one-dimensional array but
can do so without replacement.
Replacement means pulling a card from a deck and putting
it back before drawing again.

x = np.array(range(1,53))
c = np.random.choice(x, size=5, replace=False)

Ans: This code chooses five items one at a time from x array
but no replacement after each choice.

np.random.choice()

Randomness 23/37

choice by default samples with replacement - it can
select the same item again the next time!
choice randomly samples a one-dimensional array but
can do so without replacement.
Replacement means pulling a card from a deck and putting
it back before drawing again.

x = np.array(range(1,53))
c = np.random.choice(x, size=5, replace=False)

Ans: This code chooses five items one at a time from x array
but no replacement after each choice.

np.random.shuffle()

Randomness 24/37

shuffle randomly reorders an array in place.

x = np.array(range(1,53))
y = np.random.shuffle(x)

What is y?
None!

The code above shuffles a deck of cards but does not
select anything from it.
But x is changed!

np.random.shuffle()

Randomness 24/37

shuffle randomly reorders an array in place.

x = np.array(range(1,53))
y = np.random.shuffle(x)

What is y?

None!

The code above shuffles a deck of cards but does not
select anything from it.
But x is changed!

np.random.shuffle()

Randomness 24/37

shuffle randomly reorders an array in place.

x = np.array(range(1,53))
y = np.random.shuffle(x)

What is y?
None!

The code above shuffles a deck of cards but does not
select anything from it.
But x is changed!

Question 3

Randomness 25/37

Which of the following will not reproduce the behavior of a
six-sided dice in c?

A c = np.random.normal(6) + 1

B x = np.array(range(1,7))
c = np.random.choice(x)

C c = np.random.randint(6)+1

D d = np.random.uniform() * 6
c = int(d) + 1

Question 3

Randomness 26/37

Which of the following will not reproduce the behavior of a
six-sided dice in c?

A c = np.random.normal(6) + 1 ⋆

B x = np.array(range(1,7))
c = np.random.choice(x)

C c = np.random.randint(6)+1

D d = np.random.uniform() * 6
c = int(d) + 1

Question 4

Randomness 27/37

x = np.array([[’red’,1],[’yellow’,2],[’blue’,3],
[’orange’,4],[’green’,5],[’pink’,6]])

y = np.random.shuffle(x[:,1])
print(y)

What are the values for x and y?

y = None
x = array with all first element unchanged but second elements
shuffled.
Maybe (because the order is random)

x = array([[’red’,5],
[’yellow’,1],
[’blue’,3],
[’orange’,2],
[’green’,6],
[’pink’,4]])

Question 4

Randomness 27/37

x = np.array([[’red’,1],[’yellow’,2],[’blue’,3],
[’orange’,4],[’green’,5],[’pink’,6]])

y = np.random.shuffle(x[:,1])
print(y)

What are the values for x and y?
y = None
x = array with all first element unchanged but second elements
shuffled.
Maybe (because the order is random)

x = array([[’red’,5],
[’yellow’,1],
[’blue’,3],
[’orange’,2],
[’green’,6],
[’pink’,4]])

What else?

Randomness 28/37

Our first game example using random numbers was pretty
lame. What else can we do?
> Monte Carlo integration

MonteCarlo integration

Randomness 29/37

The mean theorem in calculus for integration: If fm is the
average value of f(x) between [a,b], Then∫ b

a
f(x)dx = fm(b− a)

�

MonteCarlo integration

Randomness 30/37

How to find fm which is the average value of f(x)
between [a,b]?

1. All we need is to get many, many, many, many points
between a and b and sum up the corresponding f(x)
values, then take the average.

2. This is similar to if you want to know the average weight
for all the Year 1 students, you will need to get the weight
of many Year 1 students, add them up and average it.
> The more students, the more accurate. No particular
student is preferred.

MonteCarlo integration

Randomness 31/37

To do this averaging in a computer, we can use random
numbers to get N ordinates x0,x1,...xN−1, get
f(x0),f(x1),...f(xN−1) and sum them up to find fm:

fm = x0 + x1 + x2 + ...xN−1

fm =
1

N

N−1∑
j=0

f(xj)

MonteCarlo integration

Randomness 32/37

def mcInt(f,a,b,N):
import numpy as np
x = 0.
fsum = 0.
for i in range(N):

x = np.random.uniform(a,b)
fsum += f(x)

return fsum/N*np.abs(b-a)

What else?

Randomness 33/37

Our first toy example was pretty lame. What else can we
do?
> Monte Carlo integration
> Random walk

Randomwalk

Randomness 34/37

How to generate a program that randomly plot a point up or
down or right or left from original point?
import numpy as np
import matplotlib.pyplot as plt

x = np.zeros((100,1))
y = np.zeros((100,1))

Randomwalk

Randomness 35/37

for i in range(1,len(x)):
dir = np.random.randint(4)
if dir == 0:

x[i] = x[i-1]
y[i] = y[i-1]+1

if dir == 1:
x[i] = x[i-1]+1
y[i] = y[i-1]

if dir == 2:
x[i] = x[i-1]
y[i] = y[i-1]-1

if dir == 3:
x[i] = x[i-1]-1
y[i] = y[i-1]

plt.plot(x,y)
plt.show()

What else?

Randomness 36/37

Our first toy example using random numbers was pretty
lame. What else can we do?
> Monte Carlo integration
> Random walk
> Others: scientific applications (quantum mechanics).

Summary

Randomness 37/37

A. Different distributions and ways to get random sampling
using numpy

np.random.uniform(size=(i,j))
np.random.normal(size=(x,y))
np.random.randint(k,size=(z,a))

B. plt.hist to count and plot the number of times a number
appeared

C. shuffle and choice commands
np.random.shuffle(«container»)
np.random.choice(«container»)

D. Applications: Monte Carlo Integration, random walk...

	Plt Recap
	State Recap
	Randomness

