
Python101
CS101 lec06

File Operations

2019-09-30

Roadmap

Announcements

quiz: quiz06 due on Tues 10/01
lab: no lab
hw: hw03 due TODAY (Mon 09/30)

exam: exam01 12 Oct lec01-05 MCQ and short
questions

Recap

Recap

Recursive

Recap

Question:
def runningSum(a):

if a == 0:
return 0

f = a + runningSum(a-1)
return f

tt = runningSum(3)
answer:

tt = 6

Recursive

Recap

Question:
def runningSum(a):

if a == 0:
return 0

f = a + runningSum(a-1)
return f

tt = runningSum(3)
answer:
tt = 6

Recursive

Recap

Question:
def runningSum(a):

if a == 0:
return 0

f = a + runningSum(a-1)
return f

tt = runningSum(3)

answer:
runningSum(3):

if 3 == 0: #FALSE
f = 3 + runningSum (2) #function waits: P1

...

Recursive

Recap

Question:
def runningSum(a):

if a == 0:
return 0

f = a + runningSum(a-1)
return f

tt = runningSum(3)

answer:
runningSum(3):
if 3 == 0: #FALSE

f = 3 + runningSum (2) #function waits: P1
...

Recursive

Recap

Question:
def runningSum(a):

if a == 0:
return 0

f = a + runningSum(a-1)
return f

tt = runningSum(3)

answer:
runningSum(3):
if 3 == 0: #FALSE
f = 3 + runningSum (2) #function waits: P1

...

Recursive

Recap

Question:
def runningSum(a):

if a == 0:
return 0

f = a + runningSum(a-1)
return f

tt = runningSum(3)

answer:
...
runningSum(2):

if 2 == 0: #FALSE
f = 2 + runningSum (1) #function waits: P2

...

Recursive

Recap

Question:
def runningSum(a):

if a == 0:
return 0

f = a + runningSum(a-1)
return f

tt = runningSum(3)

answer:
...
runningSum(2):
if 2 == 0: #FALSE

f = 2 + runningSum (1) #function waits: P2
...

Recursive

Recap

Question:
def runningSum(a):

if a == 0:
return 0

f = a + runningSum(a-1)
return f

tt = runningSum(3)

answer:
...
runningSum(2):
if 2 == 0: #FALSE
f = 2 + runningSum (1) #function waits: P2

...

Recursive

Recap

Question:
def runningSum(a):

if a == 0:
return 0

f = a + runningSum(a-1)
return f

tt = runningSum(3)

answer:
...
runningSum(1):
if 1 == 0: #FALSE
f = 1 + runningSum (0) #function waits: P3

runningSum(0)
if 0 == 0: #TRUE
return 0 #runningSum(0) ends; returns to P3

...

Recursive

Recap

Question:
def runningSum(a):

if a == 0:
return 0

f = a + runningSum(a-1)
return f

tt = runningSum(3)

answer:
...
runningSum(1):
if 1 == 0: #FALSE
f = 1 + runningSum (0) #function waits: P3

runningSum(0)
if 0 == 0: #TRUE
return 0 #runningSum(0) ends; returns to P3

...

Recursive

Recap

answer:
...
f = 1 + runningSum (0) #P3
f = 1 + 0 #P3
return 1 #runningSum (1) ends; return to P2

f = 2 + runningSum (1) #P2
f = 2 + 1 #P2
return 3 #runningSum (2) ends; return to P1
f = 3 + runningSum (2) #P1
f = 3 + 3 #P1
return 6 #runningSum (3) ends; return to tt

Recursive

Recap

answer:
...
f = 1 + runningSum (0) #P3
f = 1 + 0 #P3
return 1 #runningSum (1) ends; return to P2
f = 2 + runningSum (1) #P2
f = 2 + 1 #P2
return 3 #runningSum (2) ends; return to P1

f = 3 + runningSum (2) #P1
f = 3 + 3 #P1
return 6 #runningSum (3) ends; return to tt

Recursive

Recap

answer:
...
f = 1 + runningSum (0) #P3
f = 1 + 0 #P3
return 1 #runningSum (1) ends; return to P2
f = 2 + runningSum (1) #P2
f = 2 + 1 #P2
return 3 #runningSum (2) ends; return to P1
f = 3 + runningSum (2) #P1
f = 3 + 3 #P1
return 6 #runningSum (3) ends; return to tt

scope 1

Recap

Value of x at #1 and #2?
x = 4
x *= 2 # 1.

def do_calc(x):
print(x) # 2.
return x ** 2

Ans:
1. 8
2. ?

scope 1

Recap

Value of x at #1 and #2?
x = 4
x *= 2 # 1.

def do_calc(x):
print(x) # 2.
return x ** 2

Ans:
1. 8

2. ?

scope 1

Recap

Value of x at #1 and #2?
x = 4
x *= 2 # 1.

def do_calc(x):
print(x) # 2.
return x ** 2

Ans:
1. 8
2. ?

scope 2

Recap

Value of x at #1 and #2?
x = 4
x *= 2 # 1.

def do_calc(x):
print(x) # 2.
return x ** 2

do_calc(x)

Ans:
1. 8

2. 8

scope 2

Recap

Value of x at #1 and #2?
x = 4
x *= 2 # 1.

def do_calc(x):
print(x) # 2.
return x ** 2

do_calc(x)

Ans:
1. 8
2. 8

scope

Recap

Value of x at #1, #2 and #3?
x = 4
x *= 2 # 1.
def do_calc(x):

print(x) # 2.
return x ** 2

do_calc(x)
y = x + 2
x = do_calc(y) # 3.

Ans:
1. 8
2. 8 , 10
3. 100

scope

Recap

Value of x at #1, #2 and #3?
x = 4
x *= 2 # 1.
def do_calc(x):

print(x) # 2.
return x ** 2

do_calc(x)
y = x + 2
x = do_calc(y) # 3.
Ans:
1. 8
2. 8

, 10
3. 100

scope

Recap

Value of x at #1, #2 and #3?
x = 4
x *= 2 # 1.
def do_calc(x):

print(x) # 2.
return x ** 2

do_calc(x)
y = x + 2
x = do_calc(y) # 3.
Ans:
1. 8
2. 8 , 10
3. 100

function 1

Recap

def total_length(words):
total = 0
for word in words:

total += len(word)
return total

color = [”red”, ”green”, ”blue”]
lenX = total_length(color)

lenX = 12

function 1

Recap

def total_length(words):
total = 0
for word in words:

total += len(word)
return total

color = [”red”, ”green”, ”blue”]
lenX = total_length(color)

lenX = 12

function 2

Recap

def word_lengths(words):
lengths = ____
k = 0
for word in words:

lengths ____
k += 1

return lengths

wlengths = word_lengths([”red”,”green”,”blue”])

How will you modify the code to get the answer as wlengths
= [3, 5, 4]?

function 2

Recap

How to modify the code to get wlengths = [3, 5, 4]?

def word_lengths(words):
lengths = [0]*len(words)
k = 0
for word in words:

lengths[k] = len(word)
k += 1

return lengths

function 3

Recap

def fun(a):
return a + 2
return a - 2

x = fun(2) * fun(3)

What is the value of x?
A 6
B 8
C 24
D None of the above.

function 3

Recap

def fun(a):
return a + 2
return a - 2

x = fun(2) * fun(3)

What is the value of x?
A 6
B 8
C 24
D None of the above. ⋆ (20)

default in function

Recap

def funcName(xx = 99)
yy = xx + 1
zz = xx + 2
return yy, zz

att = funcName()

Ans: (100, 101)
att = funcName(1)
Ans: (2, 3)
att = funcName(xx=8)
Ans: (9, 10)
att = funcName(yy=8)
Ans: Error

default in function

Recap

def funcName(xx = 99)
yy = xx + 1
zz = xx + 2
return yy, zz

att = funcName()

Ans: (100, 101)
att = funcName(1)

Ans: (2, 3)
att = funcName(xx=8)
Ans: (9, 10)
att = funcName(yy=8)
Ans: Error

default in function

Recap

def funcName(xx = 99)
yy = xx + 1
zz = xx + 2
return yy, zz

att = funcName()

Ans: (100, 101)
att = funcName(1)
Ans: (2, 3)
att = funcName(xx=8)

Ans: (9, 10)
att = funcName(yy=8)
Ans: Error

default in function

Recap

def funcName(xx = 99)
yy = xx + 1
zz = xx + 2
return yy, zz

att = funcName()

Ans: (100, 101)
att = funcName(1)
Ans: (2, 3)
att = funcName(xx=8)
Ans: (9, 10)
att = funcName(yy=8)

Ans: Error

default in function

Recap

def funcName(xx = 99)
yy = xx + 1
zz = xx + 2
return yy, zz

att = funcName()

Ans: (100, 101)
att = funcName(1)
Ans: (2, 3)
att = funcName(xx=8)
Ans: (9, 10)
att = funcName(yy=8)
Ans: Error

File Input & Output

File Input&Output

Objectives

File Input & Output 1/39

A. Access data stored in files as plain-text.
B. Use loops with multiple levels effectively.
C. Distinguish between the use of read() and

readlines().
D. Use multiple-level loops to read a file.
E. Use split() to logically divide data and join() to unite

them.
F. Use loop aids like break, continue, zip, and

enumerate.
G. Write a file.

Files

File Input & Output 2/39

It is uncommon to generate the source data to be
processed in the same program as one uses it.
What is a file?

Punch card

File Input & Output 3/39

Punch card deck—5MB

File Input & Output 4/39

Secondary storage

File Input & Output 5/39

M1. Files

File Input & Output 6/39

file is an iterable data type created by the function open.

=> open creates a data type called file which can be
iterated.
open accepts two options:

the first one is the file name as a string.
the second one is the file mode as a string that tells
python what to do with the file. e.g., ”r”, ”w”, ”a”

Each item in the iterable is a string representing one line
in the file.

myfile = open(’wordlist.txt’ , ’r’)
for line in myfile:

print(line)

- What data type is line?

M1. Files

File Input & Output 6/39

file is an iterable data type created by the function open.
=> open creates a data type called file which can be
iterated.

open accepts two options:
the first one is the file name as a string.
the second one is the file mode as a string that tells
python what to do with the file. e.g., ”r”, ”w”, ”a”

Each item in the iterable is a string representing one line
in the file.

myfile = open(’wordlist.txt’ , ’r’)
for line in myfile:

print(line)

- What data type is line?

M1. Files

File Input & Output 6/39

file is an iterable data type created by the function open.
=> open creates a data type called file which can be
iterated.
open accepts two options:

the first one is the file name as a string.
the second one is the file mode as a string that tells
python what to do with the file. e.g., ”r”, ”w”, ”a”

Each item in the iterable is a string representing one line
in the file.

myfile = open(’wordlist.txt’ , ’r’)
for line in myfile:

print(line)

- What data type is line?

Example 1

File Input & Output 7/39

total = 0
for line in open(’numbers.txt’):

total += int(line)
#To have no error, what do you expect each ”line” to be?

print(total)

Example 2

File Input & Output 8/39

for w in open(’words.txt’ , ’r’):
vowels = 0

for c in w.lower():
if c in ’aeiou’:

vowels += 1

print(w.strip() + ’ %i’ % vowels)

Fileworkflow

File Input & Output 9/39

If we open a file, we should close it as well.
close protects the file against data loss.

myfile = open(’words.txt’ , ’r’)

for line in myfile:
print(line)

myfile.close() # process responsibly

M2. File read - .read()

File Input & Output 10/39

The default way of opening a file is to ’r’ead it.
We can extract and store all of the data from the file into a
variable at once with:

read, which returns a string

myfile = open(’words.txt’ , ’r’)
mydata = myfile.read()
myfile.close()

print(mydata)

M3. File read - .readlines()

File Input & Output 11/39

The default way of opening a file is to ’r’ead it.
We can extract all of the data from the file at once with:

readlines, which returns a list of strings. Each
string contains one line in the file.

myfile = open(’words.txt’ , ’r’)
mydata = myfile.readlines()
myfile.close()
for line in mydata:

print(line)

File read

File Input & Output 12/39

After reading, the file will be at the end of data.
Another .read() or .readlines() will return nothing
(unless other commands are used, not in CS101)

Question

File Input & Output 13/39

How different ways of reading a file?

file = open(”z.txt”,”r”)

1. file.read()
=> one string with everything in a file

2. file.readlines()
=> a list of strings where

each string is a line in a file

3. for i in file:
=> access one line by one line in a file

Question

File Input & Output 13/39

How different ways of reading a file?

file = open(”z.txt”,”r”)

1. file.read()
=> one string with everything in a file

2. file.readlines()
=> a list of strings where

each string is a line in a file

3. for i in file:
=> access one line by one line in a file

Question

File Input & Output 13/39

How different ways of reading a file?

file = open(”z.txt”,”r”)

1. file.read()
=> one string with everything in a file

2. file.readlines()
=> a list of strings where

each string is a line in a file

3. for i in file:
=> access one line by one line in a file

What can youdo after reading a
file?

File Input & Output 14/39

myfile = open(’words.txt’ , ’r’)
mydata = myfile.readlines()
myfile.close()
for line in mydata:

print(line)

Just print()? What data type is mydata?

String and List of strings 15/39

StringandListofstrings

String data

String and List of strings 16/39

The string is the same as the string data type that you
already know
Common operators used: .join() and .split()
What kind of operators are these?

String.split() example

String and List of strings 17/39

.split() : a string method that accepts a str to split by
and returns a list of str.

my_string = ’ ZJUI is more selfish than
ZJU because of the ”I” ’

a = my_string.split(’ ’)

The sentence is split using the delimited ’ ’.
What are a and len(a)?

a = [”, ’ZJUI’, ’is’, ’more’, ’selfish’,
’than’, ’ZJU’, ’because’, ’of’, ’the’,
’”I”’, ”]

len(a) = 12

String.split() example

String and List of strings 17/39

.split() : a string method that accepts a str to split by
and returns a list of str.

my_string = ’ ZJUI is more selfish than
ZJU because of the ”I” ’

a = my_string.split(’ ’)

The sentence is split using the delimited ’ ’.
What are a and len(a)?

a = [”, ’ZJUI’, ’is’, ’more’, ’selfish’,
’than’, ’ZJU’, ’because’, ’of’, ’the’,
’”I”’, ”]

len(a) = 12

String.split() example

String and List of strings 17/39

.split() : a string method that accepts a str to split by
and returns a list of str.

my_string = ’ ZJUI is more selfish than
ZJU because of the ”I” ’

a = my_string.split(’ ’)

The sentence is split using the delimited ’ ’.
What are a and len(a)?

a = [”, ’ZJUI’, ’is’, ’more’, ’selfish’,
’than’, ’ZJU’, ’because’, ’of’, ’the’,
’”I”’, ”]

len(a) = 12

String.join() example

String and List of strings 18/39

.join() : a string method that accepts a list of str
and returns a str.

my_list = [’All’,’the’,’handsome’,’boys’,
’and’,’pretty’,’girls’,’are’,’in’,’Year’,’1’]

combine = ’ ’.join(my_list)

The sentence is formed by joining the individual words with
’ ’.

Ans:
combine = ’All the handsome boys and pretty
girls are in Year 1’

String.join() example

String and List of strings 18/39

.join() : a string method that accepts a list of str
and returns a str.

my_list = [’All’,’the’,’handsome’,’boys’,
’and’,’pretty’,’girls’,’are’,’in’,’Year’,’1’]

combine = ’ ’.join(my_list)

The sentence is formed by joining the individual words with
’ ’.
Ans:
combine = ’All the handsome boys and pretty
girls are in Year 1’

Multiple-level loopsQuestion

String and List of strings 19/39

If you have this file named ”menu.csv” containing:
Drinks, Size, Price
Latte, M, 10
Latte, L, 15
Tea, M, 8
Coke, M, 5

How will you print each item in this file?

Answer

String and List of strings 20/39

d_file = open(’kentucky-derby.csv’,’r’)
d_data = d_file.read()
d_file.close()

Answer

String and List of strings 21/39

d_file = open(’kentucky-derby.csv’,’r’)
d_data = d_file.read()
d_file.close()

rows = d_data.split(’\n’)

Answer

String and List of strings 22/39

d_file = open(’kentucky-derby.csv’,’r’)
d_data = d_file.read()
d_file.close()

rows = d_data.split(’\n’)

for row in rows:
fields = row.split(’,’)

Answer

String and List of strings 23/39

d_file = open(’kentucky-derby.csv’,’r’)
d_data = d_file.read()
d_file.close()

rows = d_data.split(’\n’)

for row in rows:
fields = row.split(’,’)

for field in fields:
print(field)

Loop Aids 24/39

LoopAids

Loopmanagement: LoopAids

Loop Aids 25/39

break - stops the loop that break is immediately in
continue - skips and continues to the next iteration of the
current loop

zip - iterates two lists at the same time
enumerate - gets the item and its position/index in a list
permutations - gives all possible sets of permutation

Loopmanagement: break

Loop Aids 26/39

i = 0
while i < 10:

i += 1
if i == 4:

break # terminate the loop
print(i)

Ans:

1
2
3

Loopmanagement: break

Loop Aids 26/39

i = 0
while i < 10:

i += 1
if i == 4:

break # terminate the loop
print(i)

Ans:
1
2
3

Loopmanagement: continue

Loop Aids 27/39

i = 0
while i < 10:

i += 1
if i == 4:

continue # skip ONLY this iteration
print(i)

Ans:

1
2
3
5
...
10

Loopmanagement: continue

Loop Aids 27/39

i = 0
while i < 10:

i += 1
if i == 4:

continue # skip ONLY this iteration
print(i)

Ans:
1
2
3
5
...
10

Accessing lists - zip

Loop Aids 28/39

Sometimes we have two lists that correspond to each
other.
If we want to loop over both together, we have two
approaches open:

qs = [’name’, ’quest’, ’favourite colour’]
as = [’Meimei’, ’Have fun’, ’Fun color’]

M1:
for i in range(len(qs)):

print(’What is your %s?
It is %s.’%(qs[i],as[i]))

M2:
for q,a in zip(qs,as):

print(’What is your %s? It is %s.’%(q,a))

Accessing lists - zip

Loop Aids 28/39

Sometimes we have two lists that correspond to each
other.
If we want to loop over both together, we have two
approaches open:

qs = [’name’, ’quest’, ’favourite colour’]
as = [’Meimei’, ’Have fun’, ’Fun color’]

M1:
for i in range(len(qs)):

print(’What is your %s?
It is %s.’%(qs[i],as[i]))

M2:
for q,a in zip(qs,as):

print(’What is your %s? It is %s.’%(q,a))

Accessing lists - zip

Loop Aids 29/39

zip makes two lists jointly iterable.

def pick(a,b):
result = [] # a list of values

for i,j in zip(a,b):
result.append(i+j)

return result

What if len(a)=6 and len(b)=10? How many loops will zip
perform?
Ans: 6 loops

Accessing lists - zip

Loop Aids 29/39

zip makes two lists jointly iterable.

def pick(a,b):
result = [] # a list of values

for i,j in zip(a,b):
result.append(i+j)

return result

What if len(a)=6 and len(b)=10? How many loops will zip
perform?

Ans: 6 loops

Accessing lists - zip

Loop Aids 29/39

zip makes two lists jointly iterable.

def pick(a,b):
result = [] # a list of values

for i,j in zip(a,b):
result.append(i+j)

return result

What if len(a)=6 and len(b)=10? How many loops will zip
perform?
Ans: 6 loops

Accessing lists - enumerate

Loop Aids 30/39

What if you need to know both the value and the index of
the item?

my_list = [’meter’, ’kilogram’, ’second’]

M1
for i in range(len(my_list)):

print(’%s is the %sth item.’ % (my_list[i],i))

M2
for i,item in enumerate(my_list):

print(’%s is the %sth item.’ % (item,i))

Accessing lists - enumerate

Loop Aids 30/39

What if you need to know both the value and the index of
the item?

my_list = [’meter’, ’kilogram’, ’second’]

M1
for i in range(len(my_list)):

print(’%s is the %sth item.’ % (my_list[i],i))

M2
for i,item in enumerate(my_list):

print(’%s is the %sth item.’ % (item,i))

Accessing lists

Loop Aids 31/39

Both zip and enumerate are convenience functions!
There are multiple approaches!

Other File-related stuff 32/39

OtherFile-relatedstuff

Filemodes

Other File-related stuff 33/39

We can also ’w’rite to a file, but we need to open it
differently.
We can specify a file mode when we open a file:

’r’ to read a file’s data (default)
’w’ to write data to a file

myfile = open(’words.txt’,’w’)
myfile.write(’Hello, this is a test.’)
myfile.close() # ultra-important now!

Other modes available but not important for 101.

Question

Other File-related stuff 34/39

Assume a.txt contains:
abc
123
Sesame

file1 = open(”a.txt”,”w”)
data1 = file1.readines()
file1.close()
print(data1)

What will be printed?

Ans:
Error!

Question

Other File-related stuff 34/39

Assume a.txt contains:
abc
123
Sesame

file1 = open(”a.txt”,”w”)
data1 = file1.readines()
file1.close()
print(data1)

What will be printed?
Ans:
Error!

File paths

Other File-related stuff 35/39

Windows refers to files from C:\.
Linux (and Unix, including macOS) refers to files from /.
Sometimes in Windows, / can be used in place of C:\.

File paths

Other File-related stuff 36/39

The file path describes where a file can be found on the file
system.

Relative paths start from where you are (same
directory).
Absolute paths start from the system root (start with /
or C:\\
There are two special ”paths”: . (the current directory)
and .. (the parent directory).

File paths

Other File-related stuff 37/39

You have a file called ’lab01.ipynb’ at
c:\home\netid\cs101-sp18\

To open this file, use:
absolute path - regardless where you currently are
1. ’c:\\home\\netid\\cs101-sp18\\lab01.ipynb’
2. ’/home/netid/cs101-sp18/lab01.ipynb’

relative path If you are already @ /home/netid/
1. ’./cs101-sp18/lab01.ipynb’
2. ’cs101-sp18/lab01.ipynb’
3. ’../netid/cs101-sp18/lab01.ipynb’

Summary 38/39

Summary

Summary

Summary 39/39

1. file type is iterable => can be used in for loop
2. open(xxx,yyy) file with ’r’ or ’w’
3. 3 different ways to read a file
4. split(’something’), ’something’.join()
5. Loop Aids: break, continue, zip, enumerate
6. File Path
7. .close()

	 Recap
	File Input & Output
	String and List of strings
	Loop Aids
	Other File-related stuff
	Summary

