
Python101
CS101 lec04

Lists

2019-09-23



Announcements

quiz: quiz04 due Tues 09/24
lab: lab02 on Fri 09/27
lab: lab03 on Sun 09/29
hw: hw02 due today 09/23
I have office hours today! I can save your homework 2!
I see a lot of 0 in your quizzes?!!!@@@



Roadmap



Objectives

A. Apply the list data type as a container, including
indexing.

B. Employ for loops using lists as iterators.
C. Use methods built in data types to manipulate data.



Recap on if and Loops

Recapon if andLoops



Question 1 if statements

Recap on if and Loops

day = 3, What will be the output?

if day => 1:
print(”Monday, really? When was Sunday!”)

elif day => 2:
print(”Tuesday....”)

elif day => 3:
print(”Wednesday, Hump day!”)

else:
print(”Boring...”)

Ans: Syntax Error! Why????



Question 1 if statements

Recap on if and Loops

day = 3, What will be the output?

if day => 1:
print(”Monday, really? When was Sunday!”)

elif day => 2:
print(”Tuesday....”)

elif day => 3:
print(”Wednesday, Hump day!”)

else:
print(”Boring...”)

Ans: Syntax Error! Why????



Question 2 if statements

Recap on if and Loops

day = 3, What will be the output?

if day >= 1:
print(”Monday, So happy to attend CS101!”)

elif day >= 2:
print(”Tuesday, Exciting stuff coming”)

elif day >= 3:
print(”Wednesday, CS101!”)

else:
print(”Boring...”)

Ans:
’Monday, So happy to attend CS101!’



Question 2 if statements

Recap on if and Loops

day = 3, What will be the output?

if day >= 1:
print(”Monday, So happy to attend CS101!”)

elif day >= 2:
print(”Tuesday, Exciting stuff coming”)

elif day >= 3:
print(”Wednesday, CS101!”)

else:
print(”Boring...”)

Ans:
’Monday, So happy to attend CS101!’



Question 4while loop

Recap on if and Loops

i = 0
sum = 0
while i < 5:

if (i % 2) == 1 or (i % 2) == 0:
sum += i
i += 1

What is the value of sum?
A 15
B 0
C 10
D 1
E None of the above.



Question 4while loop

Recap on if and Loops

i = 0
sum = 0
while i < 5:

if (i % 2) == 1 or (i % 2) == 0:
sum += i
i += 1

What is the value of sum?
A 15
B 0
C 10 ⋆

D 1
E None of the above.



Question 5while loop

Recap on if and Loops

i = 0
sum = 0
while i < 5:

if (i % 2) == 1 or (i % 2) == 0:
sum += i
i += 1

print(i)
print(sum)

How many times will i be printed?

ans: 5
How many times will sum be printed?
ans: 1



Question 5while loop

Recap on if and Loops

i = 0
sum = 0
while i < 5:

if (i % 2) == 1 or (i % 2) == 0:
sum += i
i += 1

print(i)
print(sum)

How many times will i be printed?
ans: 5
How many times will sum be printed?

ans: 1



Question 5while loop

Recap on if and Loops

i = 0
sum = 0
while i < 5:

if (i % 2) == 1 or (i % 2) == 0:
sum += i
i += 1

print(i)
print(sum)

How many times will i be printed?
ans: 5
How many times will sum be printed?
ans: 1



Question 6 range

Recap on if and Loops

range(1,10) = [1, 2, 3, 4, 5, 6, 7, 8, 9]

range(5) = ?

ans: [0, 1, 2, 3, 4] as range(5) = range(,5,)



Question 6 range

Recap on if and Loops

range(1,10) = [1, 2, 3, 4, 5, 6, 7, 8, 9]

range(5) = ?

ans: [0, 1, 2, 3, 4] as range(5) = range(,5,)



Question 6 range

Recap on if and Loops

range(1,10) = [1, 2, 3, 4, 5, 6, 7, 8, 9]

range(5) = ?

ans: [0, 1, 2, 3, 4] as range(5) = range(,5,)



Question 7 for

Recap on if and Loops

for i in range(1,10):
print(i)

1
2
...
9



Question 7 for

Recap on if and Loops

for i in range(1,10):
print(i)

1
2
...
9



Question 8 for

Recap on if and Loops

x = 5
for i in x:

print(i)

Error

x = 5
for i in range(x):

print(i)

0
1
...
4



Question 8 for

Recap on if and Loops

x = 5
for i in x:

print(i)

Error

x = 5
for i in range(x):

print(i)

0
1
...
4



Question 8 for

Recap on if and Loops

x = 5
for i in x:

print(i)

Error

x = 5
for i in range(x):

print(i)

0
1
...
4



Containers: lists

Containers: lists



list is a data type

Containers: lists 1/21

The list type represents an ordered collection of items.
Containers hold values of any type (doesn’t have to be the
same).



list statement

Containers: lists 2/21

We create a list as follows:
opening bracket [
one or more comma-separated data values
closing bracket ]



list statement

Containers: lists 3/21

lists work a bit like strings:
x = [ 10, 3.14, ”Ride” ]

print( x[1] )
print( x[1:3] )
print( x[1:10] )
print( x[0::2] )
print( len(x) )

3.14
[3.14, ”Ride”]
[3.14, ”Ride”]=> python treat the slice as boundary
not exact index number
[10, ”Ride”]
3



list statement

Containers: lists 3/21

lists work a bit like strings:
x = [ 10, 3.14, ”Ride” ]

print( x[1] )
print( x[1:3] )
print( x[1:10] )
print( x[0::2] )
print( len(x) )

3.14

[3.14, ”Ride”]
[3.14, ”Ride”]=> python treat the slice as boundary
not exact index number
[10, ”Ride”]
3



list statement

Containers: lists 3/21

lists work a bit like strings:
x = [ 10, 3.14, ”Ride” ]

print( x[1] )
print( x[1:3] )
print( x[1:10] )
print( x[0::2] )
print( len(x) )

3.14
[3.14, ”Ride”]

[3.14, ”Ride”]=> python treat the slice as boundary
not exact index number
[10, ”Ride”]
3



list statement

Containers: lists 3/21

lists work a bit like strings:
x = [ 10, 3.14, ”Ride” ]

print( x[1] )
print( x[1:3] )
print( x[1:10] )
print( x[0::2] )
print( len(x) )

3.14
[3.14, ”Ride”]
[3.14, ”Ride”]

=> python treat the slice as boundary
not exact index number
[10, ”Ride”]
3



list statement

Containers: lists 3/21

lists work a bit like strings:
x = [ 10, 3.14, ”Ride” ]

print( x[1] )
print( x[1:3] )
print( x[1:10] )
print( x[0::2] )
print( len(x) )

3.14
[3.14, ”Ride”]
[3.14, ”Ride”]=> python treat the slice as boundary
not exact index number
[10, ”Ride”]

3



list statement

Containers: lists 3/21

lists work a bit like strings:
x = [ 10, 3.14, ”Ride” ]

print( x[1] )
print( x[1:3] )
print( x[1:10] )
print( x[0::2] )
print( len(x) )

3.14
[3.14, ”Ride”]
[3.14, ”Ride”]=> python treat the slice as boundary
not exact index number
[10, ”Ride”]
3



for and list

Containers: lists 4/21

things = [ ’1 thing’, ’2 things’, ’nothing’,
’everything’ ]

for thing in things:
print( ’I have %s.’ % thing )

Ans:

I have 1 thing.
I have 2 things.
I have nothing.
I have everything.



for and list

Containers: lists 4/21

things = [ ’1 thing’, ’2 things’, ’nothing’,
’everything’ ]

for thing in things:
print( ’I have %s.’ % thing )

Ans:
I have 1 thing.
I have 2 things.
I have nothing.
I have everything.



Methods

Containers: lists 5/21

Like attributes in variables, functions can be built inside a
data type as well.
Use attribute operator . to access these built-in functions.

”REALLY A NICE DINNER LAST NIGHT!”.lower()
”especially the spicy orange juice?!?”.upper()
(1 + 1j).conjugate()
”Value” infront of the ”.” operator is treated like an
argument.
Most (not all) RETURN their value.



Methods

Containers: lists 5/21

Like attributes in variables, functions can be built inside a
data type as well.
Use attribute operator . to access these built-in functions.
”REALLY A NICE DINNER LAST NIGHT!”.lower()

”especially the spicy orange juice?!?”.upper()
(1 + 1j).conjugate()
”Value” infront of the ”.” operator is treated like an
argument.
Most (not all) RETURN their value.



Methods

Containers: lists 5/21

Like attributes in variables, functions can be built inside a
data type as well.
Use attribute operator . to access these built-in functions.
”REALLY A NICE DINNER LAST NIGHT!”.lower()
”especially the spicy orange juice?!?”.upper()

(1 + 1j).conjugate()
”Value” infront of the ”.” operator is treated like an
argument.
Most (not all) RETURN their value.



Methods

Containers: lists 5/21

Like attributes in variables, functions can be built inside a
data type as well.
Use attribute operator . to access these built-in functions.
”REALLY A NICE DINNER LAST NIGHT!”.lower()
”especially the spicy orange juice?!?”.upper()
(1 + 1j).conjugate()

”Value” infront of the ”.” operator is treated like an
argument.
Most (not all) RETURN their value.



Methods

Containers: lists 5/21

Like attributes in variables, functions can be built inside a
data type as well.
Use attribute operator . to access these built-in functions.
”REALLY A NICE DINNER LAST NIGHT!”.lower()
”especially the spicy orange juice?!?”.upper()
(1 + 1j).conjugate()
”Value” infront of the ”.” operator is treated like an
argument.
Most (not all) RETURN their value.



listmethods

Containers: lists 6/21

We can change list content—they are mutable.

x = [ 4,1,2,3 ]
x[3] = -2 # sets an element
x.append(5) # adds an element
del x[1] # removes an element
x.sort() # sorts in place



Question 1

Containers: lists 7/21

Given,

y = [10]
z = [1.0, 22, ’so pretty and handsome’, 10+9.7j]

What will the following commands output?
A. y + z

= [ 10, 1.0, 22, ’so pretty and handsome’, 10+9.7j ]
B. y * 4

= [ 10, 10, 10, 10 ]
Remember list is a container

C. z[ 2 ][ 0:3 ]
= ’so ’



Question 1

Containers: lists 7/21

Given,

y = [10]
z = [1.0, 22, ’so pretty and handsome’, 10+9.7j]

What will the following commands output?
A. y + z

= [ 10, 1.0, 22, ’so pretty and handsome’, 10+9.7j ]
B. y * 4

= [ 10, 10, 10, 10 ]
Remember list is a container

C. z[ 2 ][ 0:3 ]
= ’so ’



Question 1

Containers: lists 7/21

Given,

y = [10]
z = [1.0, 22, ’so pretty and handsome’, 10+9.7j]

What will the following commands output?
A. y + z

= [ 10, 1.0, 22, ’so pretty and handsome’, 10+9.7j ]
B. y * 4

= [ 10, 10, 10, 10 ]
Remember list is a container

C. z[ 2 ][ 0:3 ]

= ’so ’



Question 1

Containers: lists 7/21

Given,

y = [10]
z = [1.0, 22, ’so pretty and handsome’, 10+9.7j]

What will the following commands output?
A. y + z

= [ 10, 1.0, 22, ’so pretty and handsome’, 10+9.7j ]
B. y * 4

= [ 10, 10, 10, 10 ]
Remember list is a container

C. z[ 2 ][ 0:3 ]
= ’so ’



Question 2

Containers: lists 8/21

Given,

x = [’hello’, 2, ’everyone’]

What will the following commands output?
1. x + 5

error
2. x + [5]

= [’hello’, 2, ’everyone’, 5]
what is x now?
= [’hello’, 2, ’everyone’] => remains the
same!

3. x.append(5)
= [’hello’, 2, ’everyone’, 5]
what is x now?
= [’hello’, 2, ’everyone’, 5] ! => Changed!



Question 2

Containers: lists 8/21

Given,

x = [’hello’, 2, ’everyone’]

What will the following commands output?
1. x + 5

error
2. x + [5]

= [’hello’, 2, ’everyone’, 5]
what is x now?
= [’hello’, 2, ’everyone’] => remains the
same!

3. x.append(5)
= [’hello’, 2, ’everyone’, 5]
what is x now?
= [’hello’, 2, ’everyone’, 5] ! => Changed!



Question 2

Containers: lists 8/21

Given,

x = [’hello’, 2, ’everyone’]

What will the following commands output?
1. x + 5

error
2. x + [5]

= [’hello’, 2, ’everyone’, 5]
what is x now?

= [’hello’, 2, ’everyone’] => remains the
same!

3. x.append(5)
= [’hello’, 2, ’everyone’, 5]
what is x now?
= [’hello’, 2, ’everyone’, 5] ! => Changed!



Question 2

Containers: lists 8/21

Given,

x = [’hello’, 2, ’everyone’]

What will the following commands output?
1. x + 5

error
2. x + [5]

= [’hello’, 2, ’everyone’, 5]
what is x now?
= [’hello’, 2, ’everyone’] => remains the
same!

3. x.append(5)

= [’hello’, 2, ’everyone’, 5]
what is x now?
= [’hello’, 2, ’everyone’, 5] ! => Changed!



Question 2

Containers: lists 8/21

Given,

x = [’hello’, 2, ’everyone’]

What will the following commands output?
1. x + 5

error
2. x + [5]

= [’hello’, 2, ’everyone’, 5]
what is x now?
= [’hello’, 2, ’everyone’] => remains the
same!

3. x.append(5)
= [’hello’, 2, ’everyone’, 5]
what is x now?

= [’hello’, 2, ’everyone’, 5] ! => Changed!



Question 2

Containers: lists 8/21

Given,

x = [’hello’, 2, ’everyone’]

What will the following commands output?
1. x + 5

error
2. x + [5]

= [’hello’, 2, ’everyone’, 5]
what is x now?
= [’hello’, 2, ’everyone’] => remains the
same!

3. x.append(5)
= [’hello’, 2, ’everyone’, 5]
what is x now?
= [’hello’, 2, ’everyone’, 5] ! => Changed!



Question 3

Containers: lists 9/21

Given,

x = [’I’, ’love’, ’to’, ’study’]
y = [’not’, ’holiday’]

What will the following commands output?
CASE 1

x + y
x

> [ ’I’, ’love’, ’to’, ’study’, ’not’, ’holiday’ ]
x = [’I’, ’love’, ’to’, ’study’]

CASE 2
x.append( y )
x

x = [’I’, ’love’, ’to’, ’study’, [’not’, ’holiday’]]



Question 3

Containers: lists 9/21

Given,

x = [’I’, ’love’, ’to’, ’study’]
y = [’not’, ’holiday’]

What will the following commands output?
CASE 1

x + y
x

> [ ’I’, ’love’, ’to’, ’study’, ’not’, ’holiday’ ]
x = [’I’, ’love’, ’to’, ’study’]

CASE 2
x.append( y )
x

x = [’I’, ’love’, ’to’, ’study’, [’not’, ’holiday’]]



Question 3

Containers: lists 9/21

Given,

x = [’I’, ’love’, ’to’, ’study’]
y = [’not’, ’holiday’]

What will the following commands output?
CASE 1

x + y
x

> [ ’I’, ’love’, ’to’, ’study’, ’not’, ’holiday’ ]
x = [’I’, ’love’, ’to’, ’study’]

CASE 2
x.append( y )
x

x = [’I’, ’love’, ’to’, ’study’, [’not’, ’holiday’]]



Question 3

Containers: lists 9/21

Given,

x = [’I’, ’love’, ’to’, ’study’]
y = [’not’, ’holiday’]

What will the following commands output?
CASE 1

x + y
x

> [ ’I’, ’love’, ’to’, ’study’, ’not’, ’holiday’ ]
x = [’I’, ’love’, ’to’, ’study’]

CASE 2
x.append( y )
x

x = [’I’, ’love’, ’to’, ’study’, [’not’, ’holiday’]]



Casting rangeoutput as list

Containers: lists 10/21

range( 0, 6, 2 )
list( range( 0, 6, 2 ) )
[ 0, 2, 4 ]



Fancy slicing for containers

Containers: lists 11/21

a = list( range( 10 ) )
# [ 0,1,2,3,4,5,6,7,8,9 ]

a[ :4 ] # from beginning to index 4 (exc.)
a[ 6: ] # from index 6 to end
a[ : ] # copy a list
a[ 1:-1:2 ] # from index 1 to -1 by twos
a[ 1::2 ] # odd indices only
a[ ::2 ] # even indices only
a[ ::-1 ] # reverse a list (!)



Question

Containers: lists 12/21

x = 0
for i in [ 1,4950,99,100 ][ 0:-1 ]:

x = i

What is the final value which x assumes?
A 0
B 99
C 100
D 4950



Question

Containers: lists 13/21

x = 0
for i in [ 1,4950,99,100 ][ 0:-1 ]:

x = i

What is the final value which x assumes?
A 0
B 99 ⋆

C 100
D 4950



String Methods 14/21

StringMethods



Stringmethods

String Methods 15/21

upper() convert to upper-case
lower() convert to lower-case
count( str1 ) count occurrences of str1
replace( s1, s2 ) replace s1 by s2
strip() remove whitespace at both ends



String comparisonmethods

String Methods 16/21

These produce Boolean output.
isdigit() Does a string contain

only numbers?
isalpha() Does a string contain

only text?
isalnum() Does a string contain

text and number
islower() Are all the letters in a

string lower-case?
isupper() Are all the letters in a

string contain upper-case?



Example: String comparison
methods

String Methods 17/21

answer = input( ’How do you feel?’ )

What is type(answer)? String!

if not answer.isalpha():
print( ”Excellent! I don’t understand you.” )

else:
print( ”Ah, you feel %s.” % answer )



Example: String comparison
methods

String Methods 17/21

answer = input( ’How do you feel?’ )

What is type(answer)?

String!

if not answer.isalpha():
print( ”Excellent! I don’t understand you.” )

else:
print( ”Ah, you feel %s.” % answer )



Example: String comparison
methods

String Methods 17/21

answer = input( ’How do you feel?’ )

What is type(answer)? String!

if not answer.isalpha():
print( ”Excellent! I don’t understand you.” )

else:
print( ”Ah, you feel %s.” % answer )



Fun time

String Methods 18/21

Write a code for testing a user’s new password. These rules
should be applied:
A. Minimum length of 8
B. Both upper and lower case letters
C. have both letters and digits
Hint: Can use isdigit(), isalpha(), islower(),
isupper()



Solution

String Methods 19/21

if len( try ) < 8:
# must be 8 characters at a minimum
print(”False”)

else:
if try.isupper() or try.islower():
# must have both upper- & lower-case letters

print(”False”)
else:

if try.isalpha() or try.isdigit():
# must have letters and numbers

print(”False”)
else:

print(”True”)

However, this code will allow special characters like
” !@#$%&̂*(),...” to pass as well. See next lecture for a better
answer.



Summary 20/21

Summary



Summary

Summary 21/21

1. list
2. for ... in list:
3. list.method() that affects the list
4. string.method()


	Recap on if and Loops
	Containers: lists
	String Methods
	Summary

