Python 101

2019-09-23



Announcements

quiz: quiz04 due Tues 09/24

lab: 1ab02 on Fri 09/27

lab: 1ab03 on Sun 09/29

hw: hw02 due today 09/23

I have office hours today! | can save your homework 2!
| see a lot of 0 in your quizzes?'@@@



Roadmap

Week 1 (9/9)

00

9/10 12110

Week 9 (4/11)

L14
PY-
Plot

Week 13 (2/12)

L22
ML-
Intro

Week 17 (30/12)

Week 2 (16/9) Week 3 (23/9) 30/9
L2
PY -
Data&
Bool @ . . X
Week 6 (14/10) Week 7 (21/10) Week 8 (28/10)
L8
PY -
Dict
Week 10 (11/11) Week 11 (18/11) Week 12 (25/11)
L20
o 5) (e
) . . opt
Rand Debug Egn If
Week 14 (9/12) Week 15 (16/12) Week 16 (23/12)
L23 L24 L25 L26
ML - ML - ML - ML-
10 Poly Stats Fit



Objectives

A. Apply the 11 st data type as a container, including
indexing.

B. Employ for loops using 1ists as iterators.
C. Use methods built in data types to manipulate data.



Recap on if and Loops



Question 1 if statements

day = 3, What will be the output?

if day => 1:
print (“Monday, really? When was Sunday!”)
elif day => 2:
print ("Tuesday....”)
elif day => 3:
print ("Wednesday, Hump day!”)
else:
print (“Boring..."”)

Recap on if and Loops



Question 1 if statements

day = 3, What will be the output?

if day => 1:
print (“Monday, really? When was Sunday!”)
elif day => 2:
print ("Tuesday....”)
elif day => 3:
print ("Wednesday, Hump day!”)
else:
print (“Boring..."”)

Ans: Syntax Error! Why??77?7?

Recap on if and Loops



Question 2 if statements

day = 3, What will be the output?

if day >= 1:

print (“Monday, So happy to attend CS101!”)
elif day >= 2:

print ("Tuesday, Exciting stuff coming”)
elif day >= 3:

print (“Wednesday, CS101!”)
else:

print (“Boring...”)

Recap on if and Loops



Question 2 if statements

day = 3, What will be the output?

if day >= 1:

print (“Monday, So happy to attend CS101!”)
elif day >= 2:

print ("Tuesday, Exciting stuff coming”)
elif day >= 3:

print (“Wednesday, CS101!”)
else:

print (“Boring...”)

Ans:
'Monday, So happy to attend CS101"

Recap on if and Loops



Question 4 loop

i =20
sum = 0
while i < 5:
if (1 $ 2) == 1 or (1 % 2) == 0:
sum += 1i
i +=1

What is the value of sum?
A 15
Bo
C 10
D1
E None of the above.

Recap on if and Loops



Question 4 loop

i =20
sum = 0
while i < 5:
if (1 $ 2) == 1 or (1 % 2) == 0:
sum += 1i
i +=1

What is the value of sum?
A 15
Bo
C 10+
D1
E None of the above.

Recap on if and Loops



Question 5 loop

i =20
sum = 0
while i < 5:
if (1 $ 2) == 1 or (1 % 2) == 0:
sum += 1
i +=1
print (i)

print (sum)

How many times will i be printed?

Recap on if and Loops



Question 5 loop

i =20
sum = 0
while i < 5:
if (1 $ 2) == 1 or (1 % 2) == 0:
sum += 1
i4+=1
print (i)

print (sum)

How many times will i be printed?
ans: 5
How many times will sum be printed?

Recap on if and Loops



Question 5 loop

i =20
sum = 0
while i < 5:
if (1 $ 2) == 1 or (1 % 2) == 0:
sum += 1
i4+=1
print (i)

print (sum)

How many times will i be printed?
ans: 5

How many times will sum be printed?
ans: 1

Recap on if and Loops



Recap on if and Loops



Recap on if and Loops



range(1,10) = [1, 2, 3, 4, 5, 6, 7, 8, 9]
range (5) = ?
ans: [0, 1, 2, 3, 4] asrange(5) = range(,5,)

Recap on if and Loops



for i in range(1,10):
print (i)

Recap on if and Loops



for i in range(1,10):
print (i)

BN

Recap on if and Loops



x =5
for i in x:
print (i)

Recap on if and Loops



x =5

for i in x:
print (i)

Error

x =5

for i in range (x):
print (i)

Recap on if and Loops



x =5

for i in x:
print (i)

Error

x =5

for i in range (x):
print (i)

Recap on if and Loops



Containers: S



is adata type

The 1ist type represents an ordered collection of items.

Containers hold values of any type (doesn’t have to be the
same).

Containers: lists

1121
]



We create a 1ist as follows:
opening bracket [
one or more comma-separated data values
closing bracket ]

Containers: lists 2/21



1ists work a bit like strings:
x = [ 10, 3.14, ”Ride” ]

print ( x[1] )
print ( x[1:3] )
print( x[1:10] )
print ( x[0::2] )
print ( len(x) )
Containers: lists 3/21



1ists work a bit like strings:
x = [ 10, 3.14, ”Ride” ]

print ( x[1] )
print ( x[1:3] )
print( x[1:10] )
print ( x[0::2] )
print ( len(x) )
3.14
Containers: lists 3/21



1ists work a bit like strings:
x = [ 10, 3.14, ”Ride” ]

print ( x[1] )
print ( x[1:3] )
print( x[1:10] )
print ( x[0::2] )
print ( len(x) )
3.14
[3.14, ”Ride”]
Containers: lists 3/21



1ists work a bit like strings:
x = [ 10, 3.14, ”Ride” ]

print ( x[1] )
print ( x[1:3] )
print( x[1:10] )
print ( x[0::2] )
print ( len(x) )
3.14
[3.14, ”Ride”]
[3.14, ”Ride”]
Containers: lists 3/21



1ists work a bit like strings:
x = [ 10, 3.14, ”Ride” ]

print ( x[1] )
print ( x[1:3] )
print( x[1:10] )
print ( x[0::2] )
print ( len(x) )
3.14

[3.14, ”"Ride”]

[3.14, ”Ride”]=> python treat the slice as boundary
not exact index number

[10, "Ride”]

Containers: lists 3/21



1ists work a bit like strings:

x = [ 10, 3.14, ”Ride” ]
print ( x[1] )

print ( x[1:3] )

print( x[1:10] )

print ( x[0::2] )

print ( len(x) )

3.14

[3.14, ”"Ride”]

[3.14, ”Ride”]=> python treat the slice as boundary
not exact index number

[10, ”Ride”]

3

Containers: lists 3/21



things = [ 1 thing’, ’2 things’, ’'nothing’,
"everything’ ]
for thing in things:
print( I have %s.’” % thing )

Ans:

Containers: lists 4/21



things = [ 1 thing’, ’2 things’, ’'nothing’,
"everything’ ]

for thing in things:

print( I have %s.’” % thing )
Ans:

| have 1 thing.

| have 2 things.

| have nothing.

| have everything.

Containers: lists 4/21



Like attributes in variables, functions can be built inside a
data type as well.

Use attribute operator . to access these built-in functions.

Containers: lists 5/21



Like attributes in variables, functions can be built inside a
data type as well.

Use attribute operator . to access these built-in functions.
"REALLY A NICE DINNER LAST NIGHT!”.lower ()

Containers: lists

5/21
]



Like attributes in variables, functions can be built inside a
data type as well.

Use attribute operator . to access these built-in functions.
"REALLY A NICE DINNER LAST NIGHT!”.lower ()
"especially the spicy orange juice?!?”.upper ()

Containers: lists

5/21
]



Like attributes in variables, functions can be built inside a
data type as well.

Use attribute operator . to access these built-in functions.
"REALLY A NICE DINNER LAST NIGHT!”.lower ()
"especially the spicy orange juice?!?”.upper ()
(L + 17j) .conjugate ()

Containers: lists

5/21
]



Containers: lists

Like attributes in variables, functions can be built inside a
data type as well.

Use attribute operator . to access these built-in functions.
"REALLY A NICE DINNER LAST NIGHT!”.lower ()
"especially the spicy orange juice?!?”.upper ()
(L + 17j) .conjugate ()

"Value” infront of the ”.” operator is treated like an
argument.

Most (not all) RETURN their value.

5/21



We can change 1ist content—they are mutable.

x=14,1,2,3
x[3] = -2
x.append (5)
del x[1]
x.sort ()

Containers: lists

]

H= = =

sets an element
adds an element
removes an element
sorts in place

6/21



z = [1.0, 22, '"so pretty and handsome’, 10+9.77]

What will the following commands output?
A v + z

Containers: lists 7/21



z = [1.0, 22, '"so pretty and handsome’, 10+9.77]

What will the following commands output?
A v + z
=[10, 1.0, 22, ’so pretty and handsome’, 10+9.7j ]
B. v * 4

Containers: lists 7/21



z = [1.0, 22, '"so pretty and handsome’, 10+9.77]

What will the following commands output?
A v + z
=[10, 1.0, 22, ’so pretty and handsome’, 10+9.7j ]
B. v * 4
=[10,10,10,10]
Remember 1ist is a container
C. z[ 2 1[ 0:31]

Containers: lists

7121



z = [1.0, 22, '"so pretty and handsome’, 10+9.77]

What will the following commands output?
A v + z
=[10, 1.0, 22, ’so pretty and handsome’, 10+9.7j ]
B. v * 4
=[10,10,10,10]
Remember 1ist is a container
C. z[ 2 1[ 0:31]
='s0’

Containers: lists

7121



Given,
x = ['"hello’, 2, "everyone’]

What will the following commands output?
1. x + 5

Containers: lists 8/21



Given,
x = ['"hello’, 2, "everyone’]

What will the following commands output?

1. x + 5
error
2. x + [5]
Containers: lists 8/21



Given,
x = ['"hello’, 2, "everyone’]

What will the following commands output?

1. x + 5
error
2. x + [5]

=['hello’, 2, ’everyone’, 5]
what is x now?

Containers: lists 8/21



Given,
x = ['"hello’, 2, "everyone’]

What will the following commands output?

1. x + 5
error
2. x + [5]

=['hello’, 2, ’everyone’, 5]

what is x now?

=[hello’, 2, ’everyone’] => remains the
same !

3. x.append(5)

Containers: lists

8/21
]



Given,
x = ['"hello’, 2, "everyone’]

What will the following commands output?

1. x + 5
error
2. x + [5]

=['hello’, 2, ’everyone’, 5]
what 1s x now?
=[hello’, 2, ’everyone’] => remains the
same !
3. x.append(5)
=[hello’, 2, ’everyone’, 5]
what 1s x now?

Containers: lists

8/21
]



Given,
x = ['"hello’, 2, "everyone’]

What will the following commands output?

1. x + 5
error
2. x + [5]

=['hello’, 2, ’everyone’, 5]
what is x now?

=[hello’, 2, ’everyone’] => remains the
same!

3. x.append(5)
=[hello’, 2, ’everyone’, 5]
what 1s x now?
=['hello’, 2, ’everyone’, 5] ! => Changed!

8/21
]

Containers: lists



Given,

x = ['I", "love’, "to’, ’"study’]
y = ['not’, "holiday’]

What will the following commands output?
CASE 1

X + vy
X

Containers: lists 9/21



Given,

x = ['I", "love’, "to’, ’"study’]
y = ['not’, "holiday’]

What will the following commands output?
CASE 1
X + vy
X
>['P, 'love’, 'to’, 'study’, 'not’, ’holiday’ ]
x =T, love’, 'to’, 'study’]

Containers: lists 9/21



Given,

x = ['I", "love’, "to’, ’"study’]
y = ['not’, "holiday’]

What will the following commands output?
CASE 1
X + vy
X
>['P, 'love’, 'to’, 'study’, 'not’, ’holiday’ ]
x =T, love’, 'to’, 'study’]
CASE 2

x.append( y )
X

Containers: lists 9/21



Given,

x = ['I", "love’, "to’, ’"study’]
y = ['not’, "holiday’]

What will the following commands output?
CASE 1
X + vy
X
>['P, 'love’, 'to’, 'study’, 'not’, ’holiday’ ]
x =T, love’, 'to’, 'study’]
CASE 2

x.append( y )
X

x =[I,’love’, ’to’, 'study’, ['not’, 'holiday’]]

Containers: lists 9/21



Casting output as

range( 0, 6, 2 )
list( range( 0, 6, 2 ) )
[ 0, 2, 4]

Containers: lists 10/21



Fancy slicing for containers

al # from beginning to index 4 (exc.)
al # from index 6 to end

al : # copy a list

al 1:-1:2 1 # from index 1 to -1 by twos

al # odd indices only

al # even indices only

al # reverse a list (!)

Containers: lists 11/21



x =0
for i in [ 1,4950,99,100 ][ O0:-1 1:
x =1

What is the final value which x assumes?
Ao
B 99
C 100
D 4950

Containers: lists 12/21



x =0
for i in [ 1,4950,99,100 ][ O0:-1 1:
x =1

What is the final value which x assumes?
Ao
B 99 «
C 100
D 4950

Containers: lists 13/21



String Methods

String Methods 14/21



String methods

upper () convert to upper-case

lower () convert to lower-case

count ( strl ) count occurrences of stril

replace( sl1, s2 ) replace sl bys?2

strip() remove whitespace at both ends
String Methods

15/21
=



String comparison methods

These produce Boolean output.

isdigit () Does a string contain
only numbers?
isalpha () Does a string contain
only text?
isalnum() Does a string contain
text and number
islower () Are all the lettersina
string lower-case?
isupper () Are all the letters in a

string contain upper-case?

String Methods 16/21



Example: String comparison

answer = input( "How do you feel?’ )

String Methods 17/21



Example: String comparison

answer = input( "How do you feel?’ )

What is type(answer)?

String Methods 17/21



Example: String comparison

answer = input( "How do you feel?’ )

What is type(answer)? String!

if not answer.isalpha() :

print ( "Excellent! I don’t understand you.” )
else:

print ( “Ah, you feel %s.” % answer )

String Methods 17/21



Write a code for testing a user’s new password. These rules
should be applied:

A. Minimum length of 8
B. Both upper and lower case letters
C. have both letters and digits

Hint: Can use isdigit (), isalpha(), islower (),
isupper ()

String Methods
]

18/21



if len( try ) < 8:
# must be 8 characters at a minimum
print ("False”)
else:
if try.isupper () or try.islower():
# must have both upper- & lower-case letters
print (“False”)
else:
if try.isalpha() or try.isdigit():
# must have letters and numbers
print (“False”)
else:
print ("True”)

However, this code will allow special characters like
" 1@#$%&(),..." to pass as well. See next lecture for a better
answer.

String Methods 19/21



Summar y 20/21



list

for ... in list:

list.method () that affects the 1ist
string.method ()

hwN =

Summary 21/21



	Recap on if and Loops
	Containers: lists
	String Methods
	Summary

