Python 101

If True: repeat in Loops

Announcements

quiz: quiz02 and quiz03 on Thurs 09/19
lab: lab 01 on Fri 09/20
hw: hw02 due on Mon 09/23
hw: hw01 last chance on Thurs 09/19

Recap on Data types and Boolean

String operations

Concatenation: combine two strings
Uses the + symbol
'RACE' + 'CAR'
Repetition: repeat a string
Uses the *
'HELLO '*10
Formatting: used to encode other data as string
Uses \% symbol

Example

$$
\begin{aligned}
& x=3 \\
& s=(" \% i \prime \%(x+1)) * x^{* *}(5 \% x) \\
& \operatorname{print}(s)
\end{aligned}
$$

What does this program print?
A 333333333333
B 444444444
C 9999
D \%i\%i\%i\%i\%i

Example

$x=3$
$s=\left(" \% i^{\prime \prime} \%(x+1)\right) * x^{* *}(5 \% x)$ print(s)

What does this program print?
A 333333333333
B $444444444 *$ (Trace the steps!)
C 9999
D \%i\%i\%i\%i\%i

Example

$$
\begin{aligned}
& x=3 \\
& s=\left(" \% i^{\prime \prime} \%(x+1)\right) * x^{* *}(5 \% x)
\end{aligned}
$$

Example

$$
\begin{aligned}
& x=3 \\
& s=\left(\prime \% i^{\prime \prime} \%(x+1)\right) \star x^{* *}(5 \% x) \\
& s=\left(\prime \% i^{\prime \prime} \%(3+1)\right) * 3 * *(5 \% 3)
\end{aligned}
$$

Example

$$
\begin{aligned}
& x=3 \\
& s=\left(\prime \% i^{\prime \prime} \%(x+1)\right) \star x^{* *}(5 \% x) \\
& s=\left(\prime \% i^{\prime \prime} \%(3+1)\right) * 3 * *(5 \% 3) \\
& s=\left(\prime \% i^{\prime \prime} \%(4)\right) \star 3 * * 2
\end{aligned}
$$

Example

$$
\begin{aligned}
& \mathrm{x}=3 \\
& s=(" \% i \prime \%(x+1)) * x * *(5 \% x) \\
& s=\left(" \% i^{\prime \prime} \%(3+1)\right) * 3 * *(5 \% 3) \\
& s=\left(" \% i^{\prime \prime} \%(4)\right) \star 3 * * 2 \\
& \mathrm{~S}=\left({ }^{\prime \prime} 4 \prime\right) * 9
\end{aligned}
$$

Example

$$
\begin{aligned}
& \mathrm{x}=3 \\
& s=(" \% i \prime \%(x+1)) * x * *(5 \% x) \\
& s=(" \% i " \%(3+1)) * 3 * *(5 \% 3) \\
& s=\left(" \% i^{\prime \prime} \%(4)\right) \star 3 * * 2 \\
& \mathrm{~S}=\left({ }^{\prime \prime} 4 \prime\right) * 9 \\
& s=" 4 " * 9
\end{aligned}
$$

Example

$$
\begin{aligned}
& \mathrm{x}=3 \\
& s=\left(" \% i^{\prime \prime} \%(x+1)\right) * x * *(5 \% x) \\
& s=(" \% i " \%(3+1)) * 3 * *(5 \% 3) \\
& s=(" \% i \prime \%(4)) * 3 * * 2 \\
& \mathrm{~S}=\left({ }^{\prime \prime} 4 \prime\right) * 9 \\
& s=" 4 " * 9 \\
& s=\text { "444444444" }
\end{aligned}
$$

Example: format operator \%

$$
\begin{aligned}
& x=666 \\
& y=\prime \% d^{\prime} \quad \% x
\end{aligned}
$$

Example: format operator \%

$$
\begin{aligned}
& \mathrm{x}=666 \\
& \mathrm{y}=\prime \% \mathrm{~d}^{\prime} \% \mathrm{x} \\
& \rightarrow{ }^{\prime} 666^{\prime} \text { and } \operatorname{type}(\mathrm{y})=\text { string } \\
& \mathrm{y}=\prime \% .1 \mathrm{f}^{\prime} \% \mathrm{x}
\end{aligned}
$$

Example: format operator \%

$$
\begin{aligned}
& x=666 \\
& y=\prime \% d^{\prime} \% x \\
& \rightarrow^{\prime} 666^{\prime} \text { and type }(y)=\text { string } \\
& y=\prime \% .1 f^{\prime} \% x \\
& \rightarrow^{\prime} 666.0^{\prime} \text { and type }(y)=\text { string }
\end{aligned}
$$

Boolean logic

What is the value of x ?
$\mathrm{x}=$ True and not False or True

Boolean logic

What is the value of x ?
$\mathrm{x}=$ True and not False or True ans: True

Boolean logic

What is the value of x ?
$\mathrm{x}=$ True and not False or True ans: True

Order (highest priority listed first):

Boolean logic

What is the value of x ?
$\mathrm{x}=$ True and not False or True ans: True

Order (highest priority listed first):
not, and, or

Boolean logic

What is the value of x ?
$x=$ True and not False or True
ans: True
Order (highest priority listed first):
not, and, or
but... these operators have lower priority than:

$$
<,<=,>,>=,==,!=
$$

which have the same importance among them

Casting

What is the value of y ?
$y=i n t\left({ }^{\prime} 2^{\prime}\right)$

Casting

What is the value of y ?
$\mathrm{y}=$ int (' 32^{\prime})
' 32 ' is a string, how many characters inside ' 32 '? How is each character represented inside a computer?

Casting

What is the value of y ?
$\mathrm{y}=$ int (' 32^{\prime})
' 32 ' is a string, how many characters inside ' 32 '? How is each character represented inside a computer?

$$
y=\operatorname{int}\left(\prime 32^{\prime}\right)=>\operatorname{int}(051050)=>\text { ASCII table }=>
$$

Casting

What is the value of y ?
$\mathrm{y}=$ int (' 32^{\prime})
' 32 ' is a string, how many characters inside ' 32 '?
How is each character represented inside a computer?
$y=\operatorname{int}\left({ }^{\prime} 32^{\prime}\right)=>\operatorname{int}(051050)=>$ ASCII table $=>$ ans: 32
$y=i n t\left(\prime 32.0^{\prime}\right)$
What kind of string will you expect in the () for int ()?
Will int () expects a '.'?

Casting

What is the value of y ?
$y=i n t\left(2^{\prime}\right)$
' 32 ' is a string, how many characters inside ' 32 '?
How is each character represented inside a computer?
$y=$ int('32') => int (051 050) => ASCII table => ans: 32
$y=i n t\left(\prime 32.0^{\prime}\right)$
What kind of string will you expect in the () for int ()?
Will int () expects a '.'?
ans: Error because int() looks up the ASCII
table for representations between '0' - '9'
and a few other things.....

Casting-ASCII

000	(nul)	016 - (dle)	032 sp	048	0	064	@	080	P	096		112
001 -	(soh)	017 - (dc1)	033 !	049	1	065	A	081	Q	097	a	113 q
002 •	(stx)	018 ((dc2)	034	050	2	066	B	082	R	098	b	114
003 *	(etx)	019 !! (dc3)	035 \#	051	3	067	C	083	S	099	c	115
004 *	(eot)	020 It (dc4)	036 \$	052	4	068	D	084	T	100	d	116
005	(enq)	021 § (nak)	037 \%	053	5	069	E	085	U	101	e	117
006	(ack)	022 - (syn)	038 \&	054	6	070	F	086	V	102	I	118
007 •	(bel)	023 £ (etb)	039	055	7	071	G	087	W	103	g	119
008 -	(bs)	024 ¢ (can)	040 (0568	8	072	H	088	X	104	h	120
009	(tab)	$025 \downarrow$ (em)	041)	057	9	073	I	089	Y	105	i	121
010	(lf)	026 (eof)	042 *	058	:	074	J	090	Z	106	J	122
$011{ }^{\circ}$	(vt)	$027 \leftarrow($ esc $)$	$043+$	059	;	075	K	091	[107	k	123
012 干	(np)	028 L (fs)	044	060	$<$	076	L	092	\}	108	1	124
013	(cr)	029 (gs)	045	061	$=$	077	M	093]	109	m	125
014 円	(so)	030 (rs)	046	062	>	078	N	094	\wedge	110	n	126
015	(si)	031 (us)	047 /	063	?	079	0	095		111	-	127

Roadmap

Objectives

A. Write correct if statements.
B. Employ basic loops (for and while) to generate iterative behavior.
C. Understand the use of range in setting up for loops.
D. Loop aids like break and continue

Conditional Execution

Control flow

Control flow

- actual sequence of lines executed by processor.

Conditional execution

- execute (or not) a block of code based on logical comparison.

Example: if

```
ans \(=-5\)
if ans < 0:
    print( "The number was negative." )
```

The indented/empty space important!

We create an if statement as follows:
the keyword if
a logical comparison ('results' in bool) a indented block of code;
if TRUE:
executes this code block

We create an if statement as follows:
the keyword if
a logical comparison ('results' in bool) a indented block of code;

```
if TRUE:
    executes this code block
```

What happens when False?

Example: if

```
ans = ( -15 / 3 ) + 10
if ans < 0:
    print( "The number was negative." )
if ans > 0:
    print( "The number was positive." )
if ans == 0:
    print( "The number was zero." )
```

We create an iflelse statement as follows: the keyword if (a logical comparison (results in bool):
a block of code (True)
the keyword else:
a different block of code (False)

```
if hour < 12:
    print( "morning" )
else:
print( "afternoon" )
a) hour = 11?
b) hour = 23?
```

day $=3$
if day == 1:
print("Monday, So happy to attend CS101!")
else:
if day == 2:
print("Tuesday, Exciting stuff coming")
else:
if day == 3:
print("Wednesday, CS101!")
else:
print("Boring...")

We create an if/elif/else statement as follows: the keyword if (a logical comparison (results in bool):
a block of code
the keyword elif (a logical comparison (results in bool):
a different block of code
the keyword else:
a different block of code

Example: if/elif/else

if day == 1:
print("Monday, So happy to attend CS101!")
elif day == 2:
print("Tuesday, Exciting stuff coming")
elif day == 3:
print("Wednesday, CS101!")
else:
print("Boring...")

Flowchart - if

```
ans = input( "Enter a number:" )
ans = float( ans )
if ans < 0:
    print( "The number was negative." )
if ans > 0:
    print( "The number was positive." )
if ans == 0:
    print( "The number was zero." )
```

ans = input()

Loops

Flowchart - loop

Example: while

```
number = 10
while number > 0:
    print(number)
    number = number - 1
print('Blast off!')
```

Indentation is important!

Defining loops: while

A while loop has only:
the keyword while
a logical comparison (bool-valued result)
a block of code

```
while True:
    executes this code block
```


Example

```
ans = 'Jialing'
while ans == 'Jialing':
    ans = input( 'Jiawei and Jialing were in a
                                    boat. Jiawei fell out.
                                    Who was left? ' )
```


Example

```
\(x=2\)
while \(x>0:\)
print("Hello")
\(\mathrm{x}-=1\)
```

How many times is 'Hello' printed?
A zero
B once
C twice
D thrice
E four times

Example

$$
x=2
$$

1st run:
while $x>0:$
while $2>0:$

Example

$x=2$

1st run:

while $x>0:$
while $2>0$:
print("Hello") \# 1st 'Hello'

Example

$x=2$

1st run:

while x > $0:$
while 2 > $0:$

$$
\begin{aligned}
& \text { print("Hello") } \\
& x-=1 \\
& x=x-1 \\
& x=2-1 \\
& x=1
\end{aligned}
$$

Example

2nd run:

while x > 0:
while 1 > 0:

Example

2nd run:

while x > 0:
while 1 > 0:
print("Hello") \# 2nd 'Hello'

Example

2nd run:

while x > 0:
while 1 > $0:$

$$
\begin{aligned}
& \text { print("Hello") \# 2nd 'Hello' } \\
& x-=1 \\
& x=x-1 \\
& x=1-1 \\
& x=0
\end{aligned}
$$

Example

2nd run:

while $x>0:$
while $1>0:$

$$
\begin{aligned}
& \text { print("Hello") \# 2nd 'Hello' } \\
& x-=1 \\
& x=x-1 \\
& x=1-1 \\
& x=0
\end{aligned}
$$

3rd run:
while x > 0:
while 0 > $0:$
Finished!

Example

```
\(x=2\)
while \(x>0:\)
print("Hello")
\(\mathrm{x}-=1\)
```

How many times is 'Hello' printed?
A zero
B once
C twice
D thrice
E four times

Infinite loops

Make sure that your code always has a way to end! while True:
print('Hello!')

Infinite loops

Make sure that your code always has a way to end! while True:
print('Hello!')

Use Ctrl+C to break free.

Accumulator pattern

Patterns are common structures we encounter in writing code.

The accumulator pattern uses an accumulator variable to track a result inside of a loop:

```
i = 0
sum = 0
while i <= 4:
    sum += i
    i += 1
```

Note: sum $+=i$ is the same as sum $=$ sum $+i$

Flowcharts

$i=0$
sum $=0$
while i <= 4:

$$
\begin{aligned}
& i=i+1 \\
& \text { sum }=\operatorname{sum}+1
\end{aligned}
$$

Assuming the first test always passes (not always true)

Example

$$
\begin{aligned}
& i=0 \\
& \text { sum }=0 \\
& \text { while } i \quad<=4: \\
& \text { sum }+=i \\
& \quad i+=1
\end{aligned}
$$

What is the value of sum?
A 6
B 10
C 15
D None of the above.

Example

$$
\begin{aligned}
& i=0 \\
& \text { sum }=0 \\
& \text { while } i \quad<=4: \\
& \text { sum }+=i \\
& \quad i+=1
\end{aligned}
$$

What is the value of sum?
A 6
B $10 \times 1+2+3+4$
C 15
D None of the above.

Flowchart - for

for i in range(0,100): print(i)
i = «first»

Defining loops: for

A for loop requires:
the keyword for
a loop variable e.g., c
the keyword in
a set of values (often range)
a block of code
for loops iterate over iterable types one at a time.
for variable in set_of_values:
executes this code if not end of set_of_values

Flowchart

s = 'abcdefg'
t = ''
for c in $s:$ $\mathrm{t}=\mathrm{c}+\mathrm{t}$

$$
\begin{aligned}
& s=1 a b c d e f g ' \\
& t=1 '
\end{aligned}
$$

Example

$$
\begin{aligned}
& \mathrm{s}= \text { 'abcdefg' } \\
& \mathrm{t}= \prime \prime \\
& \text { for } \mathrm{c} \text { in } \mathrm{s}: \\
& t=c+t
\end{aligned}
$$

What is the value of t ?
A 'abcdefg'
B 'gfedcba'
C ${ }^{\prime} a^{\prime}$
D ' g^{\prime}

Example

$$
\begin{aligned}
& s=\prime a b c d e f g^{\prime} \\
& t=\prime \prime \\
& \text { for } c \text { in } s:=>c=' a^{\prime}
\end{aligned}
$$

Example

$$
\begin{aligned}
& s=\text { 'abcdefg' } \\
& t=\prime \prime \\
& \text { for } c \text { in } s:=>c='^{\prime} a^{\prime} \\
& \\
& \quad t=c+t \\
& \\
& t=' a^{\prime}+\prime \prime
\end{aligned}
$$

Example

$$
\begin{aligned}
& s=\text { 'abcdefg' } \\
& t=r \prime \\
& \text { for } c \text { in } s:=>C=' a^{\prime} \\
& t=c+t \\
& t=\prime a^{\prime}+\prime \prime \\
& \text { for } c \text { in } s:=>c=1 b^{\prime} \\
& t=c+t \\
& t=\prime b^{\prime}+{ }^{\prime} \mathrm{a}^{\prime}
\end{aligned}
$$

Example

$$
\begin{aligned}
& \text { for } \mathrm{c} \\
& \mathrm{in} s:=>c=' \mathrm{C}^{\prime} \\
& t=c+t \\
& t={ }^{\prime} \mathrm{c}^{\prime}+\prime \mathrm{ba}
\end{aligned}
$$

:-: =.

Example

$$
\begin{aligned}
& \text { for } \mathrm{c} \\
& \mathrm{in} \mathrm{~s}:=>\mathrm{c}={ }^{\prime} \mathrm{C}^{\prime} \\
& t=\mathrm{c}+\mathrm{t} \\
& \mathrm{t}={ }^{\prime} \mathrm{c}^{\prime}+{ }^{\prime} \mathrm{ba} \text { ' }
\end{aligned}
$$

for c in $s:=>c=' g^{\prime}$
$t=c+t$
$t=' g^{\prime}+' f e d c b a '$

Example

$$
\begin{aligned}
\text { for } & c \\
& \text { in } s: c>c=c^{\prime} \\
& =c+t \\
& t=c^{\prime}+\prime b a^{\prime}
\end{aligned}
$$

for c in $s:=>c=1 g^{\prime}$
$t=c+t$
$t=$ ' $\mathrm{g}^{\prime}+$ 'fedcba'
for c in $s:=>$ end of s

Example

$$
\begin{aligned}
\text { for } & \mathrm{c} \text { in } \mathrm{s}:=>\mathrm{c}={ }^{\prime} \mathrm{c}^{\prime} \\
& t=\mathrm{c}+\mathrm{t} \\
& t={ }^{\prime} \mathrm{c}^{\prime}+{ }^{\prime} \mathrm{ba}
\end{aligned}
$$

for c in $s:=>c=' g^{\prime}$
$t=c+t$
$t=' g^{\prime}+' f e d c b a '$
for c in $s:=>$ end of s
=> end for loop

Example

$$
\begin{aligned}
& \mathrm{s}=\text { 'abcdefg' } \\
& \mathrm{t}=\mathrm{r}^{\prime} \\
& \text { for } \mathrm{c} \text { in } \mathrm{s}: \\
& \\
& \quad t=c+t
\end{aligned}
$$

What is the value of t ?
A 'abcdefg'
B 'gfedcba' *
C ${ }^{\prime} a^{\prime}$
D ' g^{\prime}

Flowcharts

range function

The range function returns a sequential set of integers. Three arguments:
(optional) the starting value of the range (inclusive) the ending value of the range (exclusive) (optional) the step size

Example

for i in range(10,0,-1): print(i ** 2)

Example

```
for i in range( 10,0,-1 ):
    print( i ** 2 )
```

range ($10,0,-1$) $=\{10,9,8,7, \ldots 1\}$

Example

```
for i in range( 10,0,-1 ):
    print( i ** 2 )
```

range ($10,0,-1$) $=\{10,9,8,7, \ldots 1\}$
i $=10=>\operatorname{print}(10$ ** 2$)=' 100^{\prime}$

Example

```
for i in range( 10,0,-1 ):
    print( i ** 2 )
```

range ($10,0,-1$) = \{10, 9, 8, 7, ... 1$\}$
i $=10=>\operatorname{print}(10$ ** 2$)=' 100^{\prime}$
i $=9$ => print (9 ** 2) = ' 81^{\prime}

Example

```
for i in range( 10,0,-1 ):
    print( i ** 2 )
```

range ($10,0,-1$) = \{10, 9, 8, 7, ... 1\}
i $=10=>\operatorname{print}(10$ ** 2$)=\prime 100^{\prime}$
i $=9$ => print (9 ** 2) = ' 81 '
i = 1 => print(1 ** 2) = '1'

Loop Aids

continue: causes the iteration to stop at where continue is and continue at the next index.
break: causes the iteration to stop at that point and also ends the loop immediately.

```
for i in range( 10 ):
        if i == 5:
        XXXX
        print( i )
```

if $X X X X=$ continue, What will be printed?

Loop Aids

continue: causes the iteration to stop at where continue is and continue at the next index.
break: causes the iteration to stop at that point and also ends the loop immediately.

```
for i in range( 10 ):
    if i == 5:
        XXXX
        print( i )
```

if $X X X X=$ continue, What will be printed? ans: 012346789
if $\mathrm{XXXX}=$ break, What will be printed?

Loop Aids

continue: causes the iteration to stop at where continue is and continue at the next index.
break: causes the iteration to stop at that point and also ends the loop immediately.

```
for i in range( 10 ):
    if i == 5:
    XXXX
        print( i )
```

if $X X X X=$ continue, What will be printed? ans: 012346789
if $\mathrm{XXXX}=\mathrm{break}$, What will be printed?
ans: 01234

Fun time 1

Write a program to sum all of the digits in a number. i.e.,

$$
12145 \rightarrow 1+2+1+4+5 \rightarrow 13
$$

Solution (while)

n is the number:

```
s = str( n )
i = 0
result = 0
while i < len( s ) :
    result = result + int( s[i] )
    i = i + 1
```


Solution (for)

```
s = str( n )
result = 0
for x in s:
    result = result + int( x )
```


Fun time 2

Write a program which counts the number of vowels in a string. Test it on'All ZJUI Year 1 are super-smart!'.

Fun time 2

Write a program which counts the number of vowels in a string. Test it on'All ZJUI Year 1 are super-smart!'.
my_string = 'All ZJUI Year 1 are super-smart!' vowel_count = 0
for char in my_string:
if char in 'aeiou': vowel_count = vowel_count + 1

Summary

Summary

1. if, if...else:, if... elif:.... else:
2. while:, for... in.... :
3. accumulator pattern
4. use range (, ,)
